999 resultados para Weapons industry.
Resumo:
Desiccated coconut industries (DCI) create various intermediates from fresh coconut kernel for cosmetic, pharmaceutical and food industries. The mechanized and non-mechanized DCI process between 10,000 and 100,000 nuts/day to discharge 6-150 m(3) of malodorous waste water leading to a discharge of 2646642 kg chemical oxygen demand (COD) daily. In these units, three main types of waste water streams are coconut kernel water, kernel wash water and virgin oil waste water. The effluent streams contain lipids (1-55 g/l), suspended solids (6-80 g/l) and volatile fatty acids (VFA) at concentrations that are inhibitory to anaerobic bacteria. Coconut water contributes to 20-50 % of the total volume and 50-60 % of the total organic loads and causes higher inhibition of anaerobic bacteria with an initial lag phase of 30 days. The lagooning method of treatment widely adopted failed to appreciably treat the waste water and often led to the accumulation of volatile fatty acids (propionic acid) along with long-chain unsaturated free fatty acids. Biogas generation during biological methane potential (BMP) assay required a 15-day adaptation time, and gas production occurred at low concentrations of coconut water while the other two streams did not appear to be inhibitory. The anaerobic bacteria can mineralize coconut lipids at concentrations of 175 mg/l; however; they are severely inhibited at a lipid level of = 350 mg/g bacterial inoculum. The modified Gompertz model showed a good fit with the BMP data with a simple sigmoid pattern. However, it failed to fit experimental BMP data either possessing a longer lag phase and/or diauxic biogas production suggesting inhibition of anaerobic bacteria.
Resumo:
AIMS: Regenerative medicine is an emerging field with the potential to provide widespread improvement in healthcare and patient wellbeing via the delivery of therapies that can restore, regenerate or repair damaged tissue. As an industry, it could significantly contribute to economic growth if products are successfully commercialized. However, to date, relatively few products have reached the market owing to a variety of barriers, including a lack of funding and regulatory hurdles. The present study analyzes industry perceptions of the barriers to commercialization that currently impede the success of the regenerative medicine industry in the UK. MATERIALS & METHODS: The analysis is based on 20 interviews with leading industrialists in the field. RESULTS: The study revealed that scientific research in regenerative medicine is thriving in the UK. Unfortunately, lack of access to capital, regulatory hurdles, lack of clinical evidence leading to problems with reimbursement, as well as the culture of the NHS do not provide a good environment for the commercialization of regenerative medicine products. CONCLUSION: Policy interventions, including increased translational government funding, a change in NHS and NICE organization and policies, and regulatory clarity, would likely improve the general outcomes for the regenerative medicine industry in the UK.
Resumo:
The impact of differing product strategies on product innovation processes pursued by healthcare firms is discussed. The critical success factors aligned to product strategies are presented. A definite split between pioneering product strategies and late entrant product strategies is also recognised.
Resumo:
The 30,000 km2 province of Luristan is situated in western Iran and encompasses the upper valleys of the Zagros Mountains. Even today, local tribesmen inhabit Luristan with their settlement patterns similar to ancient times. Several scientific excavations in the Luristan region have uncovered evidence that this particular region was a major attraction for human settlements from the Paleolithic era onwards. In Ancient Iran, the existence of rich mines together with discoveries made by innovative and inventive artisans spurred the growth of the metalworking culture as an art and a skill among early human communities in Ancient Iran. The art of Luristan can be described as the art of nomadic herdsmen and horsemen with an emphasis on the crafting of small, easily portable objects, among these a number of bronze daggers, swords and other weapons. Throughout its history, Luristan was never an ethnic or political entity because Luristan has been occupied by various tribes and races, throughout its history. Next to Elamites, other tribes who inhabited Luristan were the Hurrians, Lullubians, Kutians, and Kassites. As local tribesmen of Luristan were illiterate, information about their history can only be partially reconstructed from the literature of their southern neighbors: the Elamites and Babylonians. Luristan smiths made weapons for both civilizations. The region was later invaded by Assyrians and finally the Iranians settled the area and absorbed the local tribes. Following an accidental find by the local inhabitants in Luristan in 1928 CE, a number of unlawful diggings reveal a number of metal objects made of bronze and iron that showed a high level of craftsmanship. These objects were offered for sale on the art market with fancy names to hide their origin. The subsequent scientific excavations several decades after the initial discovery provided fascinating information about the culture of Luristan. The metalworking art of Luristan spans a time period from the third millennium BC to the Iron Age. The artifacts from Luristan seem to possess many unique and distinctive qualities, and are especially noteworthy for the apparently endless, intricate diversity and detail that they characteristically depict. The bronze artifacts found in or attributed to Luristan can be each be classed under five separate heads: a) arms and armor, including swords, dirks, daggers, axes, mace heads, spearheads, shields, quiver plaques, protective bronze girdles, helmets; b) implements related to horsemanship, including decorative or ornamental objects for horses as well as bits and snaffles; c) items for personal adornment and hygiene, including anklets, bangles, bracelets, finger rings, earrings and tweezers; d) ceremonial and ritual objects, including talismans, idols, pins, anthropomorphic and zoomorphic figurines; and e) utilitarian objects comprising various vessels and tools, including beakers, bowls and jugs. The scope of this article is limited to a discussion of the bronze and iron weapons made in Luristan. The techniques used for making bronze weapons in Luristan included: casting with open molds, casting with close molds, and casting with lost wax process. For metal sheets used for quiver plaques and bronze protective belts, the hammering technique was used. Edged weapons made in Luristan can be classified into: a) daggers, dirks, and swords with tangs; b) daggers, dirks, and swords with flanges; and c) daggers, dirks, and swords with cast-on hilts. Next to bronze, iron was also used for making weapons such as the characteristic weapon from this area, the iron mask sword.