987 resultados para Water reservoir
Resumo:
The prime objective of drying is to enhance shelf life of perishable food materials. As the process is very energy intensive in nature, researchers are trying to minimise energy consumption in the drying process. In order to determine the exact amount of energy needed for drying a food product, understanding the physics of moisture distribution and bond strength of water within the food material is essential. In order understand the critical moisture content, moisture distribution and water bond strength in food material, Thermogravimetric analysis (TGA) can be properly utilised. This work has been conducted to investigate moisture distribution and water bond strength in selected food materials; apple, banana and potato. It was found that moisture distribution and water bond strength influence moisture migration from the food materials. In addition, proportion of different types of water (bound, free, surface water) has been simply identified using TGA. This study provides a better understanding of water contents and its role in drying rate and energy consumption.
Resumo:
The purpose of this study is to determine visual performance in water, including the influence of pupil size. The water en-vironment was simulated by placing a goggle filled with saline in front of eyes, with apertures placed at the front of the goggle. Correction factors were determined for the different magnification under this condition in order to to estimate vision in water. Experiments were conducted on letter visual acuity (7 participants), grating resolution (8 participants), and grating contrast sensitivity (1 participant). For letter acuity, mean loss in vision in water, compared to corrected vision in air, varied between 1.1 log minutes of arc resolution (logMAR) for a 1mm aperture to 2.2 logMAR for a 7mm aperture. The vision in minutes of arc was described well by a linear relationship with pupil size. For grating acuity, mean loss varied between 1.1 logMAR for a 2mm aperture to 1.2 logMAR for a 6mm aperture. Contrast sensitivity for a 2mm aperture dete-riorated as spatial frequency increased, with 2 log unit loss by 3 cycles/degree. Superimposed on this deterioration were depressions (notches) in sensitivity, with the first three notches occurring at 0.45, 0.8 and 1.3 cycles/degree with esti-mates for water of 0.39, 0.70 and 1.13 cycles/degree. In conclusion, vision in water is poor. It becomes worse as pupil size increases, but the effects are much more marked for letter targets than for grating targets.
Resumo:
Purpose: To determine visual performance in water, including the influence of pupil size. Method: The water environment was simulated by placing a goggle filled with saline in front of eyes, with apertures placed at the front of the goggle. Correction factors were determined for the different magnification under this condition to estimate vision in water. Experiments were conducted on letter visual acuity (7 participants), grating resolution (8 participants), and grating contrast sensitivity (1 participant). Results: For letter acuity, mean loss in vision in water, compared to corrected vision in air, varied between 1.1 log minutes of arc resolution (logMAR) for a 1mm aperture to 2.2 logMAR for a 7mm aperture. The vision in minutes of arc was described well by a linear relationship with pupil size. For grating acuity, mean loss varied between 1.1 logMAR for a 2mm aperture to 1.2 logMAR for a 6mm aperture. Contrast sensitivity for a 2mm aperture deteriorated as spatial frequency increased, with 2 log unit loss by 3 cycles/degree. Superimposed on this deterioration were depressions (notches) in sensitivity, with the first three notches occurring at 0.45, 0.8 and 1.3 cycles/degree and with estimates for water of 0.39, 0.70 and 1.13 cycles/degree. Conclusion: Vision in water is poor. It becomes worse as pupil size increases, but the effects are much more marked for letter targets than for grating targets.
Resumo:
Human and ecosystem health impacts imposed by water pollution are a major problem in the urban areas of Sri Lanka. A primary source of pollutants to urban water sources is atmospheric particles. Hence, it is important to develop a detailed understanding of atmospheric particle characteristics, their sources of origin and the transport pathways. Several research studies have been conducted in Sri Lanka on atmospheric pollution and these studies have tended to differ in their scope, study region and the investigated pollutants. The objectives of this paper are: (1) to report the outcomes of a detailed state-of-art literature review of atmospheric pollution related studies in Sri Lanka to understand the current trends and (2) to discuss the future research activities necessary to generate the important knowledge required for the development of effective strategies to control the adverse impacts of atmospheric pollution on urban waterways.
Resumo:
Several studies published in the last few decades have demonstrated a low price-elasticity for residential water use. In particular, it has been shown that there is a quantity of water demanded that remains constant regardless of prices and other economic factors. In this research, we characterise residential water demand based on a Stone-Geary utility function. This specification is not only theory-compatible but can also explicitly model a minimum level of consumption not dependent on prices or income. This is described as minimum threshold or nondiscretionary water use. Additionally, the Stone-Geary framework is used to model the subsistence level of water consumption that is dependent on the temporal evolution of consumer habits and stock of physical capital. The main aim of this study is to analyse the impact of water-saving habits and water-efficient technologies on residential water demand, while additionally focusing attention on nondiscretionary uses. This is informed by an empirical application using data from a survey conducted among residents of Brisbane City Council, Australia. The results will be especially useful in the design of water tariffs and other water-saving policies.
Resumo:
This thesis documented pathogenic species of nontuberculous mycobacteria in the Brisbane water distribution system. When water and shower aerosol strains were compared with human strains of mycobacteria, the study found that the likelihood of acquiring infection from municipal water was specific for four main species. The method for isolation of mycobacteria from water was refined, followed by sampling from 220 sites across Brisbane. A variety of species (incl 15 pathogens) were identified and genotypically compared to human strains. For M. abscessus and M. lentiflavum, water strains clustered with human strains. Pathogenic strains of M. kansasii were found, though non-pathogenic strains dominated. Waterborne strains of M. fortuitum differed to human strains. Extensive home sampling of 20 patients with NTM disease, supported the theory that the risk of acquiring NTM from water or shower aerosols appears species specific for M. avium, M. kansasii, M. lentiflavum and M. abscessus.
Resumo:
This thesis presents a multi-criteria optimisation study of group replacement schedules for water pipelines, which is a capital-intensive and service critical decision. A new mathematical model was developed, which minimises total replacement costs while maintaining a satisfactory level of services. The research outcomes are expected to enrich the body of knowledge of multi-criteria decision optimisation, where group scheduling is required. The model has the potential to optimise replacement planning for other types of linear asset networks resulting in bottom-line benefits for end users and communities. The results of a real case study show that the new model can effectively reduced the total costs and service interruptions.
Resumo:
Cryotherapy is currently used in various clinical, rehabilitative, and sporting settings. However, very little is known regarding the impact of cooling on the microcirculatory response. Objectives: The present study sought to examine the influence of two commonly employed modalities of cryotherapy, whole body cryotherapy (WBC; -110°C) and cold water immersion(CWI; 8±1°C), on skin microcirculation in the mid- thigh region. Methods: The skin area examined was a 3 × 3 cm located between the most anterior aspect of the inguinal fold and the patella. Following 10 minutes of rest, 5 healthy, active males were exposed to either WBC for 3 minutes or CWI for 5 minutes in a randomised order. Volunteers lay supine for five minutes after treatment, in order to monitor the variation of red blood cell (RBC) concentration in the region of interest for a duration of 40 minutes. Microcirculation response was assessed using a non-invasive, portable instrument known as a Tissue Viability imaging system. After a minimum of seven days, the protocol was repeated. Subjective assessment of the volunteer’s thermal comfort and thermal sensation was also recorded. Results: RBC was altered following exposure to both WBC and CWI but appeared to stabilise approximately 35 minutes after treatments. Both WBC and CWI affected thermal sensation (p < 0.05); however no betweengroup differences in thermal comfort or sensation were recorded (p > 0.05). Conclusions: As both WBC and CWI altered RBC, further study is necessary to examine the mechanism for this alteration during whole body cooling.
Resumo:
The research seeks to address the current global water crisis and the built environments effect on the increasing demand for sustainability and water security. The fundamental question in determining the correct approach for water security in the built environment is whether government regulation and legislation could provide the framework for sustainable development and the conscious shift providing that change is the only perceivable option, there is no alternative. This article will attempt to analyse the value of the neo institutional theory as a method for directing individuals and companies to conform to water saving techniques. As is highlighted throughout the article, it will be investigated whether an incentive verse punishment approach to government legislations and regulations would provide the framework required to ensure water security within the built environment. Individuals and companies make certain choices or perform certain actions not because they fear punishment or attempt to conform; neither do they do so because an action is appropriate or feels some sort of social obligation. Instead, the cognitive element of neo institutionalism suggests that individuals make certain choices because they can conceive no alternative. The research seeks to identify whether sustainability and water security can become integrated into all aspects of design and architecture through the perception that 'there is no alternative.' This report seeks to address the omission of water security in the built environment by reporting on a series of investigations, interviews, literature reviews, exemplars and statistics relating to the built environment and the potential for increased water security. The results and analysis support the conclusions that through the support of government and local council, sustainability in the built environment could be achieved and become common practice for developments. Highlighted is the approach required for water management systems integration into the built environment and how these can be developed and maintained effectively between cities, states, countries and cultures.
Resumo:
The perceived desirability of water views continues to lead to increasing numbers relocating to coastal regions. Proximity to coastal water brings with it unique risks from rising sea levels; however, water can present a risk in any area, whether or not you have water views. Recent Australian and international disasters show that even inland populations not located in traditional flood areas are not immune from water risks. The author examines the nature of these risks and shows how the internet can be used as a tool in identifying risk areas. The author also highlights the need to ensure accuracy of the data for valuation and planning purposes and identifies flaws in the current data provision.
Resumo:
This body of photographic work has been created to firstly, explore a new approach to practice-led research that uses an “action genre” approach to reflective practice (Lemke) and secondly, to visually explore human interaction with the fundamental item in life - water. The first of these is based on the contention that to understand the meanings inherent in photographs we cannot look merely at the end result. It is essential to keep looking at the actions of practitioners, and the influences upon them, to determine how external influences affect the meaning potential of editorial photographs (Grayson, 2012). WATER therefore, provides an ideal platform to reflect upon the actions and influences involved in creating work within the photographic genre of photojournalism. It enables this practitioner to reflect on each stage of production to gain a better understanding of how external influences impact the narrative potential within images created. There are multi-faceted influences experienced by photographers who are creating images that, in turn, are part of constructing and presenting the narrative potential of editorial photographs. There is an important relationship between professional photographers and the technical, cultural, economic and institutional forces that impinge upon all stages of production and publication. What results is a greater understanding of technical, cultural, economic and institutional forces that impinge upon all stages of production and publication. Therefore, to understand the meanings inherent in photographs within WATER, I do not look merely at the end result. It provides a case study looking at my actions in the filed, and the influences upon me, to determine how external influences affect the meaning potential of these photographs (Grayson, 2012). As a result, this project adds to the body of scholarship around the definition of Photojournalism, how it has adapted to the current media environment and provides scope for further research into emerging new genres within editorial photography, such as citizen photojournalism. Concurrently, the photographs themselves were created to visually explore how there remains a humanistic desire to interact with the natural form of water even while living a modern cosmopolitan life around it. Taking a photojournalistic approach to exploring this phenomenon, the images were created by “capturing moments as they happened” with no posing or setting up of images. This serendipitous approach to the photographic medium provides the practitioner with at least an attempt to direct the subjectivity contained explicitly in photographs. What results is a series of images that extend the visual dialogue around the role of water within modern humanistic lifestyles and how it remains an integral part of our society’s behaviors. It captures important moments that document this relationship at this time of modern development. The resulting works were exhibited and published as part of the Head On Photo Festival, Australia's largest photo festival and the world's second largest festival in Sydney 20-24 May 2013. The WATER series of images were curated by three Magnum members; Ian Berry, Eli Reed and Chris Steele-Perkins. Magnum is a highly regarded international photographic co-operative with editorial offices in New York, London, Paris and Tokyo. There was a projection of the works as part of the official festival programme, presented to both members of the public and Sydney’s photography professionals. In addition, a sample of images from the WATER series was chosen for inclusion in the Magnum-published hardcover book. References Grayson, Louise. 2012. “Editorial photographs and patterns of practice.” Journalism Practice. Accessed: http://www.tandfonline.com/doi/abs/10.1080/17512786.2012.726836#.UbZN-L--1RQ Lemke, Jay. 1995. Textual Politics: Discourse and Social Dynamics. London: Taylor & Francis.
Resumo:
Background Mycobacterium abscessus is a rapidly growing mycobacterium responsible for progressive pulmonary disease, soft tissue and wound infections. The incidence of disease due to M. abscessus has been increasing in Queensland. In a study of Brisbane drinking water, M. abscessus was isolated from ten different locations. The aim of this study was to compare genotypically the M. abscessus isolates obtained from water to those obtained from human clinical specimens. Methods Between 2007 and 2009, eleven isolates confirmed as M. abscessus were recovered from potable water, one strain was isolated from a rainwater tank and another from a swimming pool and two from domestic taps. Seventy-four clinical isolates referred during the same time period were available for comparison using rep-PCR strain typing (Diversilab). Results The drinking water isolates formed two clusters with ≥97% genetic similarity (Water patterns 1 and 2). The tankwater isolate (WP4), one municipal water isolate (WP3) and the pool isolate (WP5) were distinctly different. Patient isolates formed clusters with all of the water isolates except for WP3. Further patient isolates were unrelated to the water isolates. Conclusion The high degree of similarity between strains of M. abscessus from potable water and strains causing infection in humans from the same geographical area, strengthens the possibility that drinking water may be the source of infection in these patients.
Resumo:
Background Nontuberculous mycobacteria (NTM) are normal inhabitants of a variety of environmental reservoirs including natural and municipal water. The aim of this study was to document the variety of species of NTM in potable water in Brisbane, QLD, with a specific interest in the main pathogens responsible for disease in this region and to explore factors associated with the isolation of NTM. One-litre water samples were collected from 189 routine collection sites in summer and 195 sites in winter. Samples were split, with half decontaminated with CPC 0.005%, then concentrated by filtration and cultured on 7H11 plates in MGIT tubes (winter only). Results Mycobacteria were grown from 40.21% sites in Summer (76/189) and 82.05% sites in winter (160/195). The winter samples yielded the greatest number and variety of mycobacteria as there was a high degree of subculture overgrowth and contamination in summer. Of those samples that did yield mycobacteria in summer, the variety of species differed from those isolated in winter. The inclusion of liquid media increased the yield for some species of NTM. Species that have been documented to cause disease in humans residing in Brisbane that were also found in water include M. gordonae, M. kansasii, M. abscessus, M. chelonae, M. fortuitum complex, M. intracellulare, M. avium complex, M. flavescens, M. interjectum, M. lentiflavum, M. mucogenicum, M. simiae, M. szulgai, M. terrae. M. kansasii was frequently isolated, but M. avium and M. intracellulare (the main pathogens responsible for disease is QLD) were isolated infrequently. Distance of sampling site from treatment plant in summer was associated with isolation of NTM. Pathogenic NTM (defined as those known to cause disease in QLD) were more likely to be identified from sites with narrower diameter pipes, predominantly distribution sample points, and from sites with asbestos cement or modified PVC pipes. Conclusions NTM responsible for human disease can be found in large urban water distribution systems in Australia. Based on our findings, additional point chlorination, maintenance of more constant pressure gradients in the system, and the utilisation of particular pipe materials should be considered.
Resumo:
It has been postulated that susceptible individuals may acquire infection with nontuberculous mycobacteria (NTM) from water and aerosol exposure. This study examined household water and shower aerosols of patients with NTM pulmonary disease. The mycobacteria isolated from clinical samples from 20 patients included M. avium (5 patients), M. intracellulare (12 patients), M. abscessus (7 patients), M. gordonae (1 patient), M. lentiflavum (1 patient), M. fortuitum (1 patient), M. peregrinum (1 patient), M. chelonae (1 patient), M. triplex (1 patient), and M. kansasii (1 patient). One-liter water samples and swabs were collected from all taps, and swimming pools or rainwater tanks. Shower aerosols were sampled using Andersen six-stage cascade impactors. For a subgroup of patients, real-time PCR was performed and high-resolution melt profiles were compared to those of ATCC control strains. Pathogenic mycobacteria were isolated from 19 homes. Species identified in the home matched that found in the patient in seven (35%) cases: M. abscessus (3 cases), M. avium (1 case), M. gordonae (1 case), M. lentiflavum (1 case), and M. kansasii (1 case). In an additional patient with M. abscessus infection, this species was isolated from potable water supplying her home. NTM grown from aerosols included M. abscessus (3 homes), M. gordonae (2 homes), M. kansasii (1 home), M. fortuitum complex (4 homes), M. mucogenicum (1 home), and M. wolinskyi (1 home). NTM causing human disease can be isolated from household water and aerosols. The evidence appears strongest for M. avium, M. kansasii, M. lentiflavum, and M. abscessus. Despite a predominance of disease due to M. intracellulare, we found no evidence for acquisition of infection from household water for this species.
Resumo:
A pilot experiment was performed using the WOMBAT powder diffraction instrument at ANSTO in which the first neutron diffraction peak (Q0) was measured for D2O flowing in a 2 mm internal diameter aluminium tube. Measurements of Q0 were made at -9, 4.3, 6.9, 12, 18.2 and 21.5 °C. The D2O was circulated using a siphon with water in the lower reservoir returned to the upper reservoir using a small pump. This enabled stable flow to be maintained for several hours. For example, if the pump flow increased slightly, the upper reservoir level rose, increasing the siphon flow until it matched the return flow. A neutron wavelength of 2.4 Å was used and data integrated over 60 minutes for each temperature. A jet of nitrogen from a liquid N2 Dewar was directed over the aluminium tube to vary water temperature. After collection of the data, the d spacing of the aluminium peaks was used to calculate the temperature of the aluminium within the neutron beam and therefore was considered to be an accurate measure of water temperature within the beam. Sigmaplot version 12.3 was used to fit a Weibull five parameter peak fit to the first neutron diffraction peak. The values of Q0 obtained in this experiment showed an increase with temperature consistent with data in the literature [1] but were consistently higher than published values for bulk D20. For example at 21.5 °C we obtained a value of 2.008 Å-1 for Q0 compared to a literature value of 1.988 Å-1 for bulk D2O at 20 °C, a difference of 1%. Further experiments are required to see if this difference is real or artifactual.