929 resultados para Voltage distributions
Resumo:
The installation of induction distributed generators should be preceded by a careful study in order to determine if the point of common coupling is suitable for transmission of the generated power, keeping acceptable power quality and system stability. In this sense, this paper presents a simple analytical formulation that allows a fast and comprehensive evaluation of the maximum power delivered by the induction generator, without losing voltage stability. Moreover, this formulation can be used to identify voltage stability issues that limit the generator output power. All the formulation is developed by using the equivalent circuit of squirrel-cage induction machine. Simulation results are used to validate the method, which enables the approach to be used as a guide to reduce the simulation efforts necessary to assess the maximum output power and voltage stability of induction generators. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
This paper analyzes concepts of independence and assumptions of convexity in the theory of sets of probability distributions. The starting point is Kyburg and Pittarelli's discussion of "convex Bayesianism" (in particular their proposals concerning E-admissibility, independence, and convexity). The paper offers an organized review of the literature on independence for sets of probability distributions; new results on graphoid properties and on the justification of "strong independence" (using exchangeability) are presented. Finally, the connection between Kyburg and Pittarelli's results and recent developments on the axiomatization of non-binary preferences, and its impact on "complete" independence, are described.
Resumo:
A model for computing the generation-recombination noise due to traps within the semiconductor film of fully depleted silicon-on-insulator MOSFET transistors is presented. Dependence of the corner frequency of the Lorentzian spectra on the gate voltage is addressed in this paper, which is different to the constant behavior expected for bulk transistors. The shift in the corner frequency makes the characterization process easier. It helps to identify the energy position, capture cross sections, and densities of the traps. This characterization task is carried out considering noise measurements of two different candidate structures for single-transistor dynamic random access memory devices.
Resumo:
The exact expressions for the characteristics of synchrotron radiation of charged particles in the first excited state are obtained in analytical form using quantum theory methods. We performed a detailed analysis of the angular distribution structure of radiation power and its polarization for particles with spin 0 and 1/2. It is shown that the exact quantum calculations lead to results that differ substantially from the predictions of classical theory.
Resumo:
Sensor and actuator based on laminated piezocomposite shells have shown increasing demand in the field of smart structures. The distribution of piezoelectric material within material layers affects the performance of these structures; therefore, its amount, shape, size, placement, and polarization should be simultaneously considered in an optimization problem. In addition, previous works suggest the concept of laminated piezocomposite structure that includes fiber-reinforced composite layer can increase the performance of these piezoelectric transducers; however, the design optimization of these devices has not been fully explored yet. Thus, this work aims the development of a methodology using topology optimization techniques for static design of laminated piezocomposite shell structures by considering the optimization of piezoelectric material and polarization distributions together with the optimization of the fiber angle of the composite orthotropic layers, which is free to assume different values along the same composite layer. The finite element model is based on the laminated piezoelectric shell theory, using the degenerate three-dimensional solid approach and first-order shell theory kinematics that accounts for the transverse shear deformation and rotary inertia effects. The topology optimization formulation is implemented by combining the piezoelectric material with penalization and polarization model and the discrete material optimization, where the design variables describe the amount of piezoelectric material and polarization sign at each finite element, with the fiber angles, respectively. Three different objective functions are formulated for the design of actuators, sensors, and energy harvesters. Results of laminated piezocomposite shell transducers are presented to illustrate the method. Copyright (C) 2012 John Wiley & Sons, Ltd.
Resumo:
This paper considers likelihood-based inference for the family of power distributions. Widely applicable results are presented which can be used to conduct inference for all three parameters of the general location-scale extension of the family. More specific results are given for the special case of the power normal model. The analysis of a large data set, formed from density measurements for a certain type of pollen, illustrates the application of the family and the results for likelihood-based inference. Throughout, comparisons are made with analogous results for the direct parametrisation of the skew-normal distribution.
Resumo:
The complexity of power systems has increased in recent years due to the operation of existing transmission lines closer to their limits, using flexible AC transmission system (FACTS) devices, and also due to the increased penetration of new types of generators that have more intermittent characteristics and lower inertial response, such as wind generators. This changing nature of a power system has considerable effect on its dynamic behaviors resulting in power swings, dynamic interactions between different power system devices, and less synchronized coupling. This paper presents some analyses of this changing nature of power systems and their dynamic behaviors to identify critical issues that limit the large-scale integration of wind generators and FACTS devices. In addition, this paper addresses some general concerns toward high compensations in different grid topologies. The studies in this paper are conducted on the New England and New York power system model under both small and large disturbances. From the analyses, it can be concluded that high compensation can reduce the security limits under certain operating conditions, and the modes related to operating slip and shaft stiffness are critical as they may limit the large-scale integration of wind generation.
Resumo:
Previous analyses of the mitochondrial gene cytochrome c oxidase subunit 1 (COI) and γ-proteobacterial endosymbiont diversity have suggested that the marine bryozoan Bugula neritina is a complex of three cryptic species, namely Types S, D and N. Types D and N were previously reported to have restricted distributions along California (western USA) and Delaware and Connecticut (eastern USA), respectively, whereas Type S is considered widespread in tropical, subtropical and temperate regions due to anthropogenic transport. Here, Bayesian species delimitation analysis of a data set composed of two mitochondrial (COI and large ribosomal RNA subunit [16S]) and two nuclear genes (dynein light chain roadblock type-2 protein [DYN] and voltage-dependent anion-selective channel protein [VDAC]) demonstrated that Types S, D and N correspond to three biological species. This finding was significantly supported, in spite of the combinations of priors applied for ancestral population size and root age. Furthermore, COI sequences were used to assess the introduction patterns of the cosmopolitan Type S species. Two COI haplotypes of Type S (S1a and S1d) were found occurring at a global scale. Mantel tests showed correlation between these haplotypes and local sea surface temperature tolerance. Accordingly, the distributions of Type S haplotypes may reflect intraspecific temperature tolerance variation, in addition to the role of introduction vectors. Finally, we show that the Type N may also have been introduced widely, as this species was found for the first time in Central California and north-eastern Australia.
Resumo:
The objective of this thesis is to improve the understanding of what processes and mechanism affects the distribution of polychlorinated biphenyls (PCBs) and organic carbon in coastal sediments. Because of the strong association of hydrophobic organic contaminants (HOCs) such as PCBs with organic matter in the aquatic environment, these two entities are naturally linked. The coastal environment is the most complex and dynamic part of the ocean when it comes to both cycling of organic matter and HOCs. This environment is characterised by the largest fluxes and most diverse sources of both entities. A wide array of methods was used to study these processes throughout this thesis. In the field sites in the Stockholm archipelago of the Baltic proper, bottom sediments and settling particulate matter were retrieved using sediment coring devices and sediment traps from morphometrically and seismically well-characterized locations. In the laboratory, the samples have been analysed for PCBs, stable carbon isotope ratios, carbon-nitrogen atom ratios as well as standard sediment properties. From the fieldwork in the Stockholm Archipelago and the following laboratory work it was concluded that the inner Stockholm archipelago has a low (≈ 4%) trapping efficiency for freshwater-derived organic carbon. The corollary is a large potential for long-range waterborne transport of OC and OC-associated nutrients and hydrophobic organic pollutants from urban Stockholm to more pristine offshore Baltic Sea ecosystems. Theoretical work has been carried out using Geographical Information Systems (GIS) and statistical methods on a database of 4214 individual sediment samples, each with reported individual PCB congener concentrations. From this work it was concluded that the continental shelf sediments are key global inventories and ultimate sinks of PCBs. Depending on congener, 10-80% of the cumulative historical emissions to the environment are accounted for in continental shelf sediments. Further it was concluded that the many infamous and highly contaminated surface sediments of urban harbours and estuaries of contaminated rivers cannot be of importance as a secondary source to sustain the concentrations observed in remote sediments. Of the global shelf PCB inventory < 1% are in sediments near population centres while ≥ 90% is in remote areas (> 10 km from any dwellings). The remote sub-basin of the North Atlantic Ocean contains approximately half of the global shelf sediment inventory for most of the PCBs studied.
Resumo:
[EN] An optimum multiparameter analysis was applied to a data set for the eastern boundary of the North Atlantic subtropical gyre, gathered during November of two consecutive years and spanning from 16 to 36º N. This data set covers over 20º of latitude with good meridional and zonal resolution over the whole coastal transition zone. The contribution from six water types in the depth range between 100 and 2000 m is solved. In the 100 to 700 m depth range the central waters of southern and northern origin meet abruptly at the Cape Verde Frontal Zone. This front traditionally has been reported to stretch from Cape Blanc, at about 21.5º N, to the Cape Verde Islands, but in our case it penetrates as far as 24º N over the continental slope. South of 21º N latitude we actually find a less saline and more oxygenated variety of South Atlantic Central Water, which we ascribe to less diluted equatorial waters. In the 700 to 1500 m depth range the dominant water type is a diluted form of Antarctic Intermediate Water (AAIW), whose influence smoothly disappears north of the Canary Islands as it is replaced by Mediterranean Water (MW); at latitudes where both water masses coexist, we observe MW offshore while AAIW is found near-shore. North Atlantic Deep Water is the dominating water type below about 1300/1700 m depth south/north of the Canary Islands; this abrupt change in depth suggests the existence of different paths for the deep waters reaching both sides of the archipelago.
Resumo:
[EN] In this paper, we have used Geographical Information Systems (GIS) to solve the planar Huff problem considering different demand distributions and forbidden regions. Most of the papers connected with the competitive location problems consider that the demand is aggregated in a finite set of points. In other few cases, the models suppose that the demand is distributed along the feasible region according to a functional form, mainly a uniform distribution. In this case, in addition to the discrete and uniform demand distributions we have considered that the demand is represented by a population surface model, that is, a raster map where each pixel has associated a value corresponding to the population living in the area that it covers...
Resumo:
The research activity carried out during the PhD course in Electrical Engineering belongs to the branch of electric and electronic measurements. The main subject of the present thesis is a distributed measurement system to be installed in Medium Voltage power networks, as well as the method developed to analyze data acquired by the measurement system itself and to monitor power quality. In chapter 2 the increasing interest towards power quality in electrical systems is illustrated, by reporting the international research activity inherent to the problem and the relevant standards and guidelines emitted. The aspect of the quality of voltage provided by utilities and influenced by customers in the various points of a network came out only in recent years, in particular as a consequence of the energy market liberalization. Usually, the concept of quality of the delivered energy has been associated mostly to its continuity. Hence the reliability was the main characteristic to be ensured for power systems. Nowadays, the number and duration of interruptions are the “quality indicators” commonly perceived by most customers; for this reason, a short section is dedicated also to network reliability and its regulation. In this contest it should be noted that although the measurement system developed during the research activity belongs to the field of power quality evaluation systems, the information registered in real time by its remote stations can be used to improve the system reliability too. Given the vast scenario of power quality degrading phenomena that usually can occur in distribution networks, the study has been focused on electromagnetic transients affecting line voltages. The outcome of such a study has been the design and realization of a distributed measurement system which continuously monitor the phase signals in different points of a network, detect the occurrence of transients superposed to the fundamental steady state component and register the time of occurrence of such events. The data set is finally used to locate the source of the transient disturbance propagating along the network lines. Most of the oscillatory transients affecting line voltages are due to faults occurring in any point of the distribution system and have to be seen before protection equipment intervention. An important conclusion is that the method can improve the monitored network reliability, since the knowledge of the location of a fault allows the energy manager to reduce as much as possible both the area of the network to be disconnected for protection purposes and the time spent by technical staff to recover the abnormal condition and/or the damage. The part of the thesis presenting the results of such a study and activity is structured as follows: chapter 3 deals with the propagation of electromagnetic transients in power systems by defining characteristics and causes of the phenomena and briefly reporting the theory and approaches used to study transients propagation. Then the state of the art concerning methods to detect and locate faults in distribution networks is presented. Finally the attention is paid on the particular technique adopted for the same purpose during the thesis, and the methods developed on the basis of such approach. Chapter 4 reports the configuration of the distribution networks on which the fault location method has been applied by means of simulations as well as the results obtained case by case. In this way the performance featured by the location procedure firstly in ideal then in realistic operating conditions are tested. In chapter 5 the measurement system designed to implement the transients detection and fault location method is presented. The hardware belonging to the measurement chain of every acquisition channel in remote stations is described. Then, the global measurement system is characterized by considering the non ideal aspects of each device that can concur to the final combined uncertainty on the estimated position of the fault in the network under test. Finally, such parameter is computed according to the Guide to the Expression of Uncertainty in Measurements, by means of a numeric procedure. In the last chapter a device is described that has been designed and realized during the PhD activity aiming at substituting the commercial capacitive voltage divider belonging to the conditioning block of the measurement chain. Such a study has been carried out aiming at providing an alternative to the used transducer that could feature equivalent performance and lower cost. In this way, the economical impact of the investment associated to the whole measurement system would be significantly reduced, making the method application much more feasible.