889 resultados para Topographie adaptive
Resumo:
In this paper, we present a random iterative graph based hyper-heuristic to produce a collection of heuristic sequences to construct solutions of different quality. These heuristic sequences can be seen as dynamic hybridisations of different graph colouring heuristics that construct solutions step by step. Based on these sequences, we statistically analyse the way in which graph colouring heuristics are automatically hybridised. This, to our knowledge, represents a new direction in hyper-heuristic research. It is observed that spending the search effort on hybridising Largest Weighted Degree with Saturation Degree at the early stage of solution construction tends to generate high quality solutions. Based on these observations, an iterative hybrid approach is developed to adaptively hybridise these two graph colouring heuristics at different stages of solution construction. The overall aim here is to automate the heuristic design process, which draws upon an emerging research theme on developing computer methods to design and adapt heuristics automatically. Experimental results on benchmark exam timetabling and graph colouring problems demonstrate the effectiveness and generality of this adaptive hybrid approach compared with previous methods on automatically generating and adapting heuristics. Indeed, we also show that the approach is competitive with the state of the art human produced methods.
Resumo:
The use of microbeam approaches has been a major advance in probing the relevance of bystander and adaptive responses in cell and tissue models. Our own studies at the Gray Cancer Institute have used both a charged particle microbeam, producing protons and helium ions and a soft X-ray microprobe, delivering focused carbon-K, aluminium-K and titanium-K soft X-rays. Using these techniques we have been able to build up a comprehensive picture of the underlying differences between bystander responses and direct effects in cell and tissue-like models. What is now clear is that bystander dose-response relationships, the underlying mechanisms of action and the targets involved are not the same as those observed for direct irradiation of DNA in the nucleus. Our recent studies have shown bystander responses even when radiation is deposited away from the nucleus in cytoplasmic targets. Also the interaction between bystander and adaptive responses may be a complex one related to dose, number of cells targeted and time interval.
Resumo:
The coefficients of an echo canceller with a near-end section and a far-end section are usually updated with the same updating scheme, such as the LMS algorithm. A novel scheme is proposed for echo cancellation that is based on the minimisation of two different cost functions, i.e. one for the near-end section and a different one for the far-end section. The approach considered leads to a substantial improvement in performance over the LMS algorithm when it is applied to both sections of the echo canceller. The convergence properties of the algorithm are derived. The proposed scheme is also shown to be robust to noise variations. Simulation results confirm the superior performance of the new algorithm.
Resumo:
In a decision feedback equalizer (DFE), the structural parameters, including the decision delay, the feedforward filter (FFF), and feedback filter (FBF) lengths, must be carefully chosen, as they greatly influence the performance. Although the FBF length can be set as the channel memory, there is no closed-form expression for the FFF length and decision delay. In this letter, first we analytically show that the two-dimensional search for the optimum FFF length and decision delay can be simplified to a one-dimensional search and then describe a new adaptive DFE where the optimum structural parameters can he self-adapted.
Resumo:
For a digital echo canceller it is desirable to reduce the adaptation time, during which the transmission of useful data is not possible. LMS is a non-optimal algorithm in this case as the signals involved are statistically non-Gaussian. Walach and Widrow (IEEE Trans. Inform. Theory 30 (2) (March 1984) 275-283) investigated the use of a power of 4, while other research established algorithms with arbitrary integer (Pei and Tseng, IEEE J. Selected Areas Commun. 12(9)(December 1994) 1540-1547) or non-quadratic power (Shah and Cowan, IEE.Proc.-Vis. Image Signal Process. 142 (3) (June 1995) 187-191). This paper suggests that continuous and automatic, adaptation of the error exponent gives a more satisfactory result. The family of cost function adaptation (CFA) stochastic gradient algorithm proposed allows an increase in convergence rate and, an improvement of residual error. As special case the staircase CFA algorithm is first presented, then the smooth CFA is developed. Details of implementations are also discussed. Results of simulation are provided to show the properties of the proposed family of algorithms. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
Abstract Adaptability to changing circumstances is a key feature of living creatures. Understanding such adaptive processes is central to developing successful autonomous artifacts. In this paper two perspectives are brought to bear on the issue of adaptability. The first is a short term perspective which looks at adaptability in terms of the interactions between the agent and the environment. The second perspective involves a hierarchical evolutionary model which seeks to identify higher-order forms of adaptability based on the concept of adaptive meta-constructs. Task orientated and agent-centered models of adaptive processes in artifacts are considered from these two perspectives. The former isrepresented by the fitness function approach found in evolutionary learning, and the latter in terms of the concepts of empowerment and homeokinesis found in models derived from the self-organizing systems approach. A meta-construct approach to adaptability based on the identification of higher level meta-metrics is also outlined. 2009 Published by Elsevier B.V.