991 resultados para Temporal logic
Resumo:
The need to make default assumptions is frequently encountered in reasoning about incompletely specified worlds. Inferences sanctioned by default are best viewed as beliefs which may well be modified or rejected by subsequent observations. It is this property which leads to the non-monotonicity of any logic of defaults. In this paper we propose a logic for default reasoning. We then specialize our treatment to a very large class of commonly occuring defaults. For this class we develop a complete proof theory and show how to interface it with a top down resolution theorem prover. Finally, we provide criteria under which the revision of derived beliefs must be effected.
Resumo:
A technique is presented for ascertaining when a (finite-state) partial process specification is adequate, in the sense of being specified enough, for contexts in which it is to be used. The method relies on the automatic generation of a modal formula from the partial specification; if the remainder of the network satisfies this formula, then any process that meets the specification is guaranteed to ensure correct behavior of the overall system. Using the results, the authors develop compositional proof rules for establishing the correctness of networks of parallel processes and illustrate their use with several examples
Resumo:
A voltage-controlled ring oscillator (VCO) based on a full enhancement-mode InAIAs/InGaAs/InP high electron mobility transistor (HEMT) logic is proposed. An enhancement-mode HEMT (E-HEMT) is fabricated, whose threshold is demonstrated to be 10 mV. The model of the E-HEMT is established and used in the SPICE simulation of the VCO. The result proves that the full E-HEMT logic technology can be applied to the VCO. And compared with the HEMT DCFL technology, the complexity of our fabrication process is reduced and the reliability is improved.
Resumo:
A technology for the monolithic integration of resonant tunneling diodes (RTDs) and high electron mobility transistors (HEMTs) is developed. Molecular beam epitaxy is used to grow an RTD on a HEMT structure on GaAs substrate. The RTD has a room temperature peak-to-valley ratio of 5.2:1 with a peak current density of 22.5kA/cm~2. The HEMT has a 1μm gate length with a-1V threshold voltage. A logic circuit called a monostableto-bistable transition logic element (MOBILE) circuit is developed. The experimental result confirms that the fabricated logic circuit operates successfully with frequency operations of up to 2GHz.