976 resultados para TECTA PROTEIN, HUMAN


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The entire extracellular domain of the human heat-stable enterotoxin (ST) receptor as well as a truncated N-terminal domain were cloned as glutathione S-transferase fusion proteins and expressed in Escherichia coli. The recombinant fusion proteins were purified from both the cytosol and the inclusion body fractions by selective detergent extraction followed by glutathione-agarose affinity chromatography. The purified protein, corresponding to the entire extracellular domain, bound the stable toxin peptide with an affinity comparable to that of the native receptor characterized from the human colonic T84 cell line. No binding was observed with the N-terminal truncated fragment of the receptor under similar conditions, Polyclonal antibodies were raised to the entire extracellular domain fusion protein as well as the truncated extracellular domain fusion protein, and the antibodies were purified by affinity chromatography. Addition of the purified antibodies to T84 cells inhibited ST binding and abolished ST-mediated cGMP production, indicating that critical epitopes involved in ligand interaction are present in the N-terminal fragment of the receptor, Purified antibodies recognized a single protein of M(r) 160,000 Da on Western blotting with T84 membranes, corresponding to a size of the native glycosylated receptor in T84 cells. These studies are the first report of the expression, purification, and characterization of any member of the guanylyl cyclase family of receptors in E. coli and show that binding of the toxin to the extracellular domain of the receptor is possible in the absence of any posttranslational modifications such as glycosylation. The recombinant fusion proteins as well as the antibodies that we have generated could serve as useful tools in the identification of critical residues of the extracellular domain involved in ligand interaction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Primary microcephaly (MCPH) is an autosomal-recessive congenital disorder characterized by smaller-than-normal brain size and mental retardation. MCPH is genetically heterogeneous with six known loci: MCPH1-MCPH6. We report mapping of a novel locus, MCPH7, to chromosome 1p32.3-p33 between markers D1S2797 and D1S417, corresponding to a physical distance of 8.39 Mb. Heterogeneity analysis of 24 families previously excluded from linkage to the six known MCPH loci suggested linkage of five families (20.83%) to the MCPH7 locus. In addition, four families were excluded from linkage to the MCPH7 locus as well as all of the six previously known loci, whereas the remaining 15 families could not be conclusively excluded or included. The combined maximum two-point LOD score for the linked families was 5.96 at marker D1S386 at theta = 0.0. The combined multipoint LOD score was 6.97 between markers D1S2797 and D1S417. Previously, mutations in four genes, MCPH1, CDK5RAP2, ASPM, and CENPJ, that code for centrosomal proteins have been shown to cause this disorder. Three different homozygous mutations in STIL, which codes for a pericentriolar and centrosomal protein, were identified in patients from three of the five families linked to the MCPH7 locus; all are predicted to truncate the STIL protein. Further, another recently ascertained family was homozygous for the same mutation as one of the original families. There was no evidence for a common haplotype. These results suggest that the centrosome and its associated structures are important in the control of neurogenesis in the developing human brain.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Glycodelin A (GdA), is a lipocalin with an immunomodulatory role, secreted by the endometrium under progesterone regulation and proposed to play a role in protecting the fetus from maternal immune attack. Glycodelin A has an inhibitory effect on the proliferation of T cells and B cells and also on the activity of natural killer cells. We have earlier demonstrated that the inhibitory effect of glycodelin A on T cell proliferation is due to apoptosis induced in these cells through the caspase-dependent intrinsic mitochondrial pathway. Studies reported until now have shown that glycodelin modulates the adaptive immune responses. We, therefore, decided to look at its effect, if any, on the innate immune system. The effect of glycodelin on monocytes was studied using human monocytic cell lines, THP1 and U937, and primary human monocytes as model systems. We demonstrated that glycodelin inhibited the proliferation of THP1 and U937 and induced apoptosis in these cells as well as in primary monocytes. We found that this signaling was caspase-independent but followed the intrinsic mitochondrial pathway of apoptosis. No effect of glycodelin was seen on the phagocytic ability of monocytes post-differentiation into macrophages. These observations suggest that, at the fetomaternal interface, glycodelin plays a protective role by deleting the monocytes that could become pro-inflammatory. Importantly, leaving the macrophages untouched to carry on with efficient clearance of the apoptotic cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Phosphorylation by protein kinases is a common event in many cellular processes. Further, many kinases perform specialized roles and are regulated by non-kinase domains tethered to kinase domain. Perturbation in the regulation of kinases leads to malignancy. We have identified and analysed putative protein kinases encoded in the genome of chimpanzee which is a close evolutionary relative of human. Result: The shared core biology between chimpanzee and human is characterized by many orthologous protein kinases which are involved in conserved pathways. Domain architectures specific to chimp/human kinases have been observed. Chimp kinases with unique domain architectures are characterized by deletion of one or more non-kinase domains in the human kinases. Interestingly, counterparts of some of the multi-domain human kinases in chimp are characterized by identical domain architectures but with kinase-like non-kinase domain. Remarkably, out of 587 chimpanzee kinases no human orthologue with greater than 95% sequence identity could be identified for 160 kinases. Variations in chimpanzee kinases compared to human kinases are brought about also by differences in functions of domains tethered to the catalytic kinase domain. For example, the heterodimer forming PB1 domain related to the fold of ubiquitin/Ras-binding domain is seen uniquely tethered to PKC-like chimpanzee kinase. Conclusion: Though the chimpanzee and human are evolutionary very close, there are chimpanzee kinases with no close counterpart in the human suggesting differences in their functions. This analysis provides a direction for experimental analysis of human and chimpanzee protein kinases in order to enhance our understanding on their specific biological roles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The nicotinic Acetylcholine Receptor (nAChR) is the major class of neurotransmitter receptors that is involved in many neurodegenerative conditions such as schizophrenia, Alzheimer's and Parkinson's diseases. The N-terminal region or Ligand Binding Domain (LBD) of nAChR is located at pre- and post-synaptic nervous system, which mediates synaptic transmission. nAChR acts as the drug target for agonist and competitive antagonist molecules that modulate signal transmission at the nerve terminals. Based on Acetylcholine Binding Protein (AChBP) from Lymnea stagnalis as the structural template, the homology modeling approach was carried out to build three dimensional model of the N-terminal region of human alpha(7)nAChR. This theoretical model is an assembly of five alpha(7) subunits with 5 fold axis symmetry, constituting a channel, with the binding picket present at the interface region of the subunits. alpha-netlrotoxin is a potent nAChR competitive antagonist that readily blocks the channel resulting in paralysis. The molecular interaction of alpha-Bungarotoxin, a long chain alpha-neurotoxin from (Bungarus multicinctus) and human alpha(7)nAChR seas studied. Agonists such as acetylcholine, nicotine, which are used in it diverse array of biological activities, such as enhancements of cognitive performances, were also docked with the theoretical model of human alpha(7)nAChR. These docked complexes were analyzed further for identifying the crucial residues involved i interaction. These results provide the details of interaction of agonists and competitive antagonists with three dimensional model of the N-terminal region of human alpha(7)nAChR and thereby point to the design of novel lead compounds.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ontogeny of muscarinic receptors was studied in human fetal striatum, brainstem, and cerebellum to investigate general principles of synaptogenesis as well as the physiological balance between various chemical synapses during development in a given region of the brain. [3H]Quinuclidinyl benzilate ([-'H]QNB) binding was assayed in total particulate fraction (TPF) from various parts of brain. In the corpus striatum, QNB binding sites are present at 16 weeks of gestation (average concentration 180 fmol/mg protein of TPF), slowly increase up to 24 weeks (average concentration 217 fmol/mg protein), and rapidly increase during the third trimester to 480 fmol/mg protein of TPF. In contrast, dopaminergic receptors exist as two subpopulations. one with low affinity and the other with high affinity up to the 24th week of gestation; all of them acquire the highaffinity characteristic during the third trimester. In brainstem, the muscarinic receptors show maximum concentration by 16 weeks of age (360 fmolimg protein of TPF). Subsequently the muscarinic receptor concentration shows a gradual decline in the brainstem. In cerebellum, except for a slight increase at 24 weeks (average concentration 90 fmol/mg protein of TPF), the receptor concentration remained nearly constant at about 60-70 fmolimg protein of TPF throughout fetal life. This study demonstrates that the ontogeny of muscarinic receptors varies among the different regions, and the patterns observed suggest that receptor formation occurs principally in the third trimester. Also noteworthy is the finding that the QNB binding sites decreased in all regions of the human brain during adult life. Key Words: Cholinergic muscarinic receptors-Quinuclidinyl benzilate-Corpus striaturn-Brainstem-Cerebellum. Ravikumar B. V. and Sastry P. S. Cholinergic muscarinic receptors in human fetal brain: Ontogeny of [3H]quinuclidinyl benzilate binding sites in corpus striatum, brainstem, and cerebellum. J. Neurochem. 45, 1948- 1950 (1985).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To evaluate the relative efficacy of nonele-mental versus semielemental enteral supplements for nutritional rehabilitation of cystic fibrosis (CF) patients, whole-body protein turnover using the [15N]glycine method was studied in nine malnourished CF patients during enteral feedings, in a block design study compar-ing a semielemental formula (Criticare), a higher protein density but nonelemental formula (Traumacal) (T), and a nonelemental formula that had been modified to become isocaloric and isonitrogenous to the semielemental formula (modified Traumacal, MT). No significant differences in rates of protein synthesis or catabolism were observed comparing the three formulas. However the higher protein density nonelemental formula resulted in higher net protein deposition compared to the other two formulas (T + 0.42 g kg-110 h-1versus 0.33 g kg-110 h-1for Criticare and-0.59 g kg-110 h-1for MT), although this was significant (p < 0.05) for the MT versus T comparison only. This study lends support to the use of less expensive nonelemental formulas for the nutritional management of malnourished patients with CF. © 1990 Raven Press Ltd, New York.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Effects of nutritional supplements on minimizing weight loss and abnormalities of protein turnover during pulmonary exacerbations in cystic fibrosis (CF) were studied by controlled trial. Patients received pulmonary therapy and either standard diet (n = 10) or adjunctive enteral supplements (n = 12). Initial protein turnover, measured by [15N]glycine kinetics, showed alterations of protein synthesis (P Syn) and catabolism (P Cat), which correlated with the degree of underweight, and negligible net protein deposition (P Dep). With treatment both groups had significant increases in mean body weight and forced expiratory volume in 1 s, expressed as percent predicted value for height (FEV1) by 3 wk, but a significant correlation between initial underweight and subsequent weight gain was observed only in supplemented patients. Mean P Syn and P Dep increased significantly (p < 0.001) only in the supplemented group. Pulmonary exacerbations in CF have important adverse effects on body-protein metabolism, similar to changes in protein-energy malnutrition and infection. These effects are reversed by short-term nutritional support. Strategic nutritional intervention should thus be considered in management, especially in malnourished patients.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: Gamma-aminobutyric acid A (GABAA) receptors (GABAARs), which are ionotropic receptors involving chloride channels, have been identified in various neural (e.g., mouse retinal ganglion cells) and nonneural cells (e.g., mouse lens epithelial cells) regulating the intracellular calcium concentration ([Ca(2+)]i). GABAAR β-subunit protein has been isolated in the cultured human and rat RPE, and GABAAα1 and GABAAρ1 mRNAs and proteins are present in the chick RPE. The purpose of this study was to investigate the expression of GABAAα1 and GABAAρ1, two important subunits in forming functional GABAARs, in the cultured human RPE, and further to explore whether altering receptor activation modifies [Ca(2+)]i. Methods: Human RPE cells were separately cultured from five donor eye cups. Real-time PCR, western blots, and immunofluorescence were used to test for GABAAα1 and GABAAρ1 mRNAs and proteins. The effects of the GABAAR agonist muscimol, antagonist picrotoxin, or the specific GABAAρ antagonist 1,2,5,6-tetrahydropyridin-4-yl) methylphosphinic acid (TPMPA) on [Ca(2+)]i in cultured human RPE were demonstrated using Fluo3-AM. Results: Both GABAAα1 and GABAAρ1 mRNAs and proteins were identified in cultured human RPE cells; antibody staining was mainly localized to the cell membrane and was also present in the cytoplasm but not in the nucleus. Muscimol (100 μM) caused a transient increase of the [Ca(2+)]i in RPE cells regardless of whether Ca(2+) was added to the buffer. Muscimol-induced increases in the [Ca(2+)]i were inhibited by pretreatment with picrotoxin (300 μM) or TPMPA (500 μM). Conclusions: GABAAα1 and GABAAρ1 are expressed in cultured human RPE cells, and GABAA agents can modify [Ca(2+)]i.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

tRNA synthetases (aaRS) are enzymes crucial in the translation of genetic code. The enzyme accylates the acceptor stem of tRNA by the congnate amino acid bound at the active site, when the anti-codon is recognized by the anti-codon site of aaRS. In a typical aaRS, the distance between the anti-codon region and the amino accylation site is approximately 70 Å. We have investigated this allosteric phenomenon at molecular level by MD simulations followed by the analysis of protein structure networks (PSN) of non-covalent interactions. Specifically, we have generated conformational ensembles by performing MD simulations on different liganded states of methionyl tRNA synthetase (MetRS) from Escherichia coli and tryptophenyl tRNA synthetase (TrpRS) from Human. The correlated residues during the MD simulations are identified by cross correlation maps. We have identified the amino acids connecting the correlated residues by the shortest path between the two selected members of the PSN. The frequencies of paths have been evaluated from the MD snapshots[1]. The conformational populations in different liganded states of the protein have been beautifully captured in terms of network parameters such as hubs, cliques and communities[2]. These parameters have been associated with the rigidity and plasticity of the protein conformations and can be associated with free energy landscape. A comparison of allosteric communication in MetRS and TrpRS [3] elucidated in this study highlights diverse means adopted by different enzymes to perform a similar function. The computational method described for these two enzymes can be applied to the investigation of allostery in other systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Arrest of proliferation is one of the prerequisites for differentiation of cytotrophoblasts into syncytiotrophoblasts, and thus during differentiation telomerase activity, as well as human telomerase reverse transcriptase (hTERT) expression, is down-regulated. Considering this, it is of interest to investigate whether syncytium formation can be delayed by prolonging the expression of telomerase in cytotrophoblasts. BeWo cells were transfected with pLPC-hTERT retroviral vector and the reverse transcription-polymerase chain reaction analysis for hTERT mRNA concentrations in the transfected cells revealed a several-fold increase in hTERT mRNA compared with the cells transfected with empty vector, and this confirmed that the transfection was successful. An increase in the proliferation, as assessed by bromodeoxyuridine incorporation assay, as well as an increase in mRNA and protein concentration of various cyclins and proliferating cell nuclear antigen, was noticed. The effect of hTERT transfection was also assessed after the addition of forskolin to induce differentiation and it was observed that cell–cell fusion was delayed and differentiation did not occur in hTERT-transfected cells. However, the effects seen were only transient as stable transfection was not possible and the cells were undergoing apoptosis after 72 h, which suggested that apart from hTERT other factors might be important for immortalization of BeWo cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The chemical nature of the hydrolysis products from the glucosinolate-myrosinase system depends on the presence or absence of supplementary proteins such as epithiospecifier proteins (ESPs). ESPs promote the formation of epithionitriles from terminal alkenyl glucosinolates and, as recent evidence suggests, simple nitriles at the expense of isothiocyanates. From a human health perspective isothiocyanates are the most important because they are major inducers of carcinogen-detoxifying enzymes. Fe2+ is an essential factor in ESP activity, although several recent studies have highlighted discrepancies in the understanding of the ESP-iron interaction. To investigate further the role iron species play in regulating ESP activity, four ESP-containing seedpowders were analyzed for ESP and myrosinase activities, endogenous iron content, and glucosinolate degradation products after the addition of iron species, specific chelators, and reducing agents. For the first time this paper shows the effect of these additions on the hydrolysis of individual glucosinolates that constitute the total pool. Aged seeds and 3-day seedlings were also tested to investigate the effects of seed storage and early plant development on iron levels and ESP activity. The four ESP-containing plant systems tested gave two distinctive responses, thus providing strong evidence that ESPs vary markedly in their Fe2+ requirement for activity. The results also indicated that reduction of ferric to ferrous iron drives variations in ESP activity during early plant development. The reverse oxidation reaction provided a convincing explanation for the loss of ESP activity during seed storage. Aged seeds produced seedlings with substantially lower ESP activity, and there was a concomitant loss in germination rate. It was concluded that manipulation of endogenous iron levels of ESP-containing plants could increase the conversion of glucosinolates to isothiocyanates and enhance potential health benefits.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Glaucoma is a group of progressive optic neuropathies causing irreversible blindness if not diagnosed and treated in the early state of progression. Disease is often, but not always, associated with increased intraocular pressure (IOP), which is also the most important risk factor for glaucoma. Ophthlamic timolol preparations have been used for decades to lower increased intraocular pressure (IOP). Timolol is locally well tolerated but may cause e.g. cardiovascular and pulmonary adverse effects due to systemic absorption. It has been reported that approximately 80% of a topically administered eye drop is systemically absorbed. However, only limited information is available on timolol metabolism in the liver or especially in the human eye. The aim of this work was to investigate metabolism of timolol in human liver and human ocular tissues. The expression of drug metabolizing cytochrome P450 (CYP) enzymes in the human ciliary epithelial cells was studied. The metabolism of timolol and the interaction potential of timolol with other commercially available medicines were investigated in vitro using different liver preparations. The absorption of timolol to the aqueous humor from two commercially available products: 0.1% eye gel and 0.5% eye drops and the presence of timolol metabolites in the aqueous humor were investigated in a clinical trial. Timolol was confirmed to be metabolized mainly by CYP2D6 as previously suggested. Potent CYP2D6 inhibitors especially fluoxetine, paroxetine and quinidine inhibited the metabolism of timolol. The inhibition may be of clinical significance in patients using ophthalmic timolol products. CYP1A1 and CYP1B1 mRNAs were expressed in the human ciliary epithelial cells. CYP1B1 was also expressed at protein level and the expression was strongly induced by a known potent CYP1B1 inducer 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). The CYP1B1 induction is suggested to be mediated by aryl hydrocarbon receptor (AHR). Low levels of CYP2D6 mRNA splice variants were expressed in the human ciliary epithelial cells and very low levels of timolol metabolites were detected in the human aqueous humor. It seems that negligible amount of CYP2D6 protein is expressed in the human ocular tissues. Timolol 0.1% eye gel leads to aqueous humor concentration high enough to achieve therapeutic effect. Inter-individual variation in concentrations is low and intraocular as well as systemic safety can be increased when using this product with lower timolol concentration instead of timolol 0.5% eye drops.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Neural stem cell characteristics affected by oncogenic pathways and in a human motoneuron disease Stem cells provide the self-renewing cell pool for developing or regenerating organs. The mechanisms underlying the decisions of a stem or progenitor cell to either self-renew and maintain multipotentiality or alternatively to differentiate are incompletely understood. In this thesis work, I have approached this question by investigating the role of the proto-oncogene Myc in the regulatory functions of neural progenitor cell (NPC) self-renewal, proliferation and differentiation. By using a retroviral transduction technique to create overexpression models in embryonic NPCs cultured as neurospheres, I show that activated levels of Myc increase NPC self-renewal. Furthermore, several mechanisms that regulate the activity of Myc were identified. Myc induced self-renewal is signalled through binding to the transcription factor Miz-1 as shown by the inhibited capacity of a Myc mutant (MycV394D), deficient in binding to Miz-1, to increase self-renewal in NPCs. Furthermore, overexpression of the newly identified proto-oncogene CIP2A recapitulates the effects of Myc overexpression in NPCs. Also the expression levels and in vivo expression patterns of Myc and CIP2A were linked together. CIP2A stabilizes Myc protein levels in several cancer types by inhibiting its degradation and our results suggest the same function for CIP2A in NPCs. Our results also support the conception of self-renewal and proliferation being two separately regulated cellular functions. Finally, I suggest that Myc regulates NPC self-renewal by influencing the way stem and progenitor cells react to the environmental cues that normally dictate the cellular identity of tissues containing self-renewing cells. Neurosphere cultures were also utilised in order to characterise functional defects in a human disease. Neural stem cell cultures obtained post-mortem from foetuses of lethal congenital contracture syndrome (LCCS) were used to reveal possible cell autonomous differentiation defects of patient NPCs. However, LCCS derived NPCs were able to differentiate normally in vitro although several transcriptional differences were identified by using microarray analysis. Proliferation rate of the patient NPCs was also increased as compared to NPCs of age-matched control foetuses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Prostate cancer is the most common noncutaneous malignancy and the second leading cause of cancer mortality in men. In 2004, 5237 new cases were diagnosed and altogether 25 664 men suffered from prostate cancer in Finland (Suomen Syöpärekisteri). Although extensively investigated, we still have a very rudimentary understanding of the molecular mechanisms leading to the frequent transformation of the prostate epithelium. Prostate cancer is characterized by several unique features including the multifocal origin of tumors and extreme resistance to chemotherapy, and new treatment options are therefore urgently needed. The integrity of genomic DNA is constantly challenged by genotoxic insults. Cellular responses to DNA damage involve elegant checkpoint cascades enforcing cell cycle arrest, thus facilitating damage repair, apoptosis or cellular senescence. Cellular DNA damage triggers the activation of tumor suppressor protein p53 and Wee1 kinase which act as executors of the cellular checkpoint responses. These are essential for genomic integrity, and are activated in early stages of tumorigenesis in order to function as barriers against tumor formation. Our work establishes that the primary human prostatic epithelial cells and prostatic epithelium have unexpectedly indulgent checkpoint surveillance. This is evidenced by the absence of inhibitory Tyr15 phosphorylation on Cdk2, lack of p53 response, radioresistant DNA synthesis, lack of G1/S and G2/M phase arrest, and presence of persistent gammaH2AX damage foci. We ascribe the absence of inhibitory Tyr15 phosphorylation to low levels of Wee1A, a tyrosine kinase and negative regulator of cell cycle progression. Ectopic Wee1A kinase restored Cdk2-Tyr15 phosphorylation and efficiently rescued the ionizing radiation-induced checkpoints in the human prostatic epithelial cells. As variability in the DNA damage responses has been shown to underlie susceptibility to cancer, our results imply that a suboptimal checkpoint arrest may greatly increase the accumulation of genetic lesions in the prostate epithelia. We also show that small molecules can restore p53 function in prostatic epithelial cells and may serve as a paradigm for the development of future therapeutic agents for the treatment of prostate cancer We hypothesize that the prostate has evolved to activate the damage surveillance pathways and molecules involved in these pathways only to certain stresses in extreme circumstances. In doing so, this organ inadvertently made itself vulnerable to genotoxic stress, which may have implications in malignant transformation. Recognition of the limited activity of p53 and Wee1 in the prostate could drive mechanism-based discovery of preventative and therapeutic agents.