990 resultados para Sub-sampling
Resumo:
We demonstrate a mid-infrared Raman-soliton continuum extending from 1.9 to 3 μm in a highly germanium-doped silica-clad fiber, pumped by a nanotube mode-locked thulium-doped fiber system, delivering 12 kW sub-picosecond pulses at 1.95 μm. This simple and robust source of light covers a portion of the atmospheric transmission window. © 2013 Optical Society of America.
Resumo:
In this paper, we present a physically-based compact model for the sub-threshold behavior in a TFT with an amorphous semiconductor channel. Both drift and diffusion current components are considered and combined using an harmonic average. Here, the diffusion component describes the exponential current behavior due to interfacial deep states, while the drift component is associated with presence of localized deep states formed by dangling bonds broken from weak bonds in the bulk and follows a power law. The proposed model yields good agreement with measured results. © 2013 IEEE.
Resumo:
We report an ultrafast fiber laser based on carbon nanotube saturable absorber. 84 fs pulses are generated directly from the fiber oscillator with 61.2 nm spectral width. © 2011 Optical Society of America.
Resumo:
A technique enabling 10 Gbps data to be directly modulated onto a monolithic sub-THz dual laser transmitter is proposed. As a result of the laser chirp, the logical zeros of the resultant sub-THz signal have a different peak frequency from that of the logical ones. The signal extinction ratio is therefore enhanced by suppressing the logical zeros with a filter stage at the receiver. With the aid of the chirp-enhanced filtering, an improved extinction ratio can be achieved at moderate modulation current. Hence, 10 GHz modulation bandwidth of the transmitter is predicted without the need for external modulators. In this paper, we demonstrate the operational principle by generating an error-free (bit error rate less than 10-9) 100 Mbps Manchester encoded signal with a centre frequency of 12 GHz within the bandwidth of an envelope detector, whilst direct modulation of a 100 GHz signal at data rates of up to 10 Gbps is simulated by using a transmission line model. This work could be a key technique for enabling monolithic sub-THz transmitters to be readily used in high speed wireless links. © 2013 IEEE.
Resumo:
A packaged 10GHz monolithic two-section quantum-dot mode-locked laser is presented, with record narrow 500Hz RF electrical linewidth for passive mode-locking. Single sideband noise spectra show 147fs integrated timing jitter over the 4MHz-80MHz frequency range. © 2009 Optical Society of America.
Resumo:
A monolithic design is proposed for low-noise sub-THz signal generation by integrating a reflector onto a dual laser source. The reflectivity and the position of such a reflector can be adjusted to obtain constructive feedback from the reflector to both lasers, thus causing a Vernier feedback effect. As a result, 10-fold line narrowing, the narrowing being limited by the resolution of the simulation, is predicted using a transmission line model. Finally, a simple control scheme using an electrical feedback loop to adjust laser biases is proposed to maintain the line narrowing performance. This line narrowing technique, comprising a passive integrated reflector, could allow the development of a low-cost, compact and energy-efficient solution for high-purity sub-THz signal generation. © The Institution of Engineering and Technology 2014.
Resumo:
This paper demonstrates on chip sub bandgap detection of light at 1550 nm wavelength using the configuration of interleaved PN junctions along a silicon waveguide. The device operates under reverse bias in a nearly fully depleted mode, thus minimizing the free carrier plasma losses and significantly increases the detection volume at the same time. Furthermore, substantial enhancement in responsivity is observed by the transition from reverse bias to avalanche breakdown regime. The observed high responsivity of up to 7.2 mA/W at 3 V is attributed to defect assisted photogeneration, where the defects are related to the surface and the bulk of the waveguide. © 2014 AIP Publishing LLC.
1.5 V Sub-mW CMOS Interface Circuit for Capacitive Sensor Applications in Ubiquitous Sensor Networks
Resumo:
A sub-chronic toxicity experiment was conducted to examine tissue distribution and depuration of two microcystins (microcystin-LR and microcystin -RR) in the phytoplanktivorous filter-feeding silver carp during a course of 80 days. Two large tanks (A, B) were used, and in Tank A, the fish were fed naturally with fresh Microcystis viridis cells (collected from a eutrophic pond) throughout the experiment, while in Tank B, the food of the fish were M. viridis cells for the first 40 days and then changed to artificial carp feed. High Performance Liquid Chromatography (HPLC) was used to measure MC-LR and MC-RR in the M. viridis cells, the seston, and the intestine, blood, liver and muscle tissue of silver carp at an interval of 20 days. MC-RR and MC-LR in the collected Microcystis cells varied between 268-580 and 110-292 mug g(-1) DW, respectively. In Tank A, MC-RR and MC-LR varied between 41.5-99.5 and 6.9-15.8 mug g(-1) DW in the seston, respectively. The maximum MC-RR in the blood, liver and muscle of the fish was 49.7, 17.8 and 1.77 mug g(-1) DW, respectively. No MC-LR was detectable in the muscle and blood samples of the silver carp in spite of the abundant presence of this toxin in the intestines (for the liver, there was only one case when a relatively minor quantity was detected). These findings contrast with previous experimental results on rainbow trout. Perhaps silver carp has a mechanism to degrade MC-LR actively and to inhibit MC-LR transportation across the intestines. The depuration of MC-RR concentrations occurred slowly than uptakes in blood, liver and muscle, and the depuration rate was in the order of blood > liver > muscle. The grazing ability of silver carp on toxic cyanobacteria suggests an applicability of using phytoplanktivorous fish to counteract cyanotoxin contamination in eutrophic waters. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
We demonstrate a sub-nanosecond electro-optical switch with low crosstalk in a silicon-on-insulator (SOI) dual-coupled micro-ring embedded with p-i-n diodes. A crosstalk of -23 dB is obtained in the 20-mu m-radius micro-ring with the well-designing asymmetric dual-coupling structure. By optimizations of the doping profiles and the fabrication processes, the sub-nanosecond switch-on/off time of < 400 ps is finally realized under an electrical pre-emphasized driving signal. This compact and fast-response micro-ring switch, which can be fabricated by complementary metal oxide semiconductor (CMOS) compatible technologies, have enormous potential in optical interconnects of multicore networks-on-chip.
Resumo:
We experimentally demonstrate a small-size and high-speed silicon optical switch based on the free carrier plasma dispersion in silicon. Using an embedded racetrack resonator with a quality factor of 7400, the optical switch shows an extinction ratio exceeding 13 dB with a footprint of only 2.2 x 10(-3) mm(2). Moreover, a novel pre-emphasis technique is introduced to improve the optical response performance and the rise and the fall times are reduced down to 0.24 ns and 0.42 ns respectively, which are 25% and 44% lower than those without the pre-emphasis.
Resumo:
The authors present an analysis of a plasmonic waveguide, simulated using a two-dimensional finite-difference time-domain technique. With the surface structures located on the surface of the metal, the device is able to confine and guide light waves in a sub-wavelength scale. And two waveguides can be placed within 150 nm (similar to 6% of the incident wavelength) that will helpful for the optoelectronic integration. Within the 20 mu m simulation region, it is found that the intensity of the guided light at the interface is roughly two to four times the peak intensity of the incident light, and the propagation length can reach approximately 40 Pm at the wavelength of 2.44 mu m. (c) 2007 Elsevier B.V. All rights reserved.