973 resultados para Structural dynamics.


Relevância:

30.00% 30.00%

Publicador:

Resumo:

HIV-1 integrase (IN) has become an attractive target since drug resistance against HIV-1 reverse transcriptase (RT) and protease (PR) has appeared. Diketo acid (DKA) inhibitors are potent and selective inhibitors of HIV-1 IN: however the action mechanism is not well understood. Here, to study the inhibition mechanism of DKAs we performed 10 ns comparative molecular dynamics simulations on HIV-1 IN bound with three most representative DMA inhibitors: Shionogi inhibitor, S-1360 and two Merck inhibitors L-731,988 and L-708,906. Our simulations show that the acidic part of S-1360 formed salt bridge and cation-pi interactions with Lys159. In addition, the catalytic Glu152 in S-1360 was pushed away from the active site to form an ion-pair interaction with Arg199. The Merck inhibitors can maintain either one or both of these ion-pair interaction features. The difference in potencies of the DMA inhibitors is thus attributed to the different binding modes at the catalytic site. Such structural information at atomic level, not only demonstrates the action modes of DMA inhibitors but also provides a novel starting point for structural-based design of HIV-1 IN inhibitors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Signal Transducers and Activators of Transcription (STAT) proteins are a group of latent cytoplasmic transcription factors involved in cytokine signaling. STAT3 is a member of the STAT family and is expressed at elevated levels in a large number of diverse human cancers and is now a validated target for anticancer drug discovery.. Understanding the dynamics of the STAT3 dimer interface, accounting for both protein-DNA and protein-protein interactions, with respect to the dynamics of the latent unphosphorylated STAT3 monomer, is important for designing potential small-molecule inhibitors of the activated dimer. Molecular dynamics (MD) simulations have been used to study the activated STAT3 homodimer:DNA complex and the latent unphosphorylated STAT3 monomer in an explicit water environment. Analysis of the data obtained from MD simulations over a 50 ns time frame has suggested how the transcription factor interacts with DNA, the nature of the conformational changes, and ways in which function may be affected. Examination of the dimer interface, focusing on the protein-DNA interactions, including involvement of water molecules, has revealed the key residues contributing to the recognition events involved in STAT3 protein-DNA interactions. This has shown that the majority of mutations in the DNA-binding domain are found at the protein-DNA interface. These mutations have been mapped in detail and related to specific protein-DNA contacts. Their structural stability is described, together with an analysis of the model as a starting-point for the discovery of novel small-molecule STAT3 inhibitors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a study on the phase equilibrium behaviour of binary mixtures containing two 1-alkyl-3-methylimidazolium bis{(trifluoromethyl)sulfonyl}imide-based ionic liquids, [Cnmim] [NTf2] (n=2 and 4), mixed with diethylamine or triethylamine as a function of temperature and composition using different experimental techniques. Based on this work, two systems showing an LCST and one system with a possible hourglass shape are measured. Their phase behaviours are then correlated and predicted by using Flory–Huggins equations and the UNIQUAC method implemented in Aspen. The potential of the COSMO-RS methodology to predict the phase equilibria was also tested for the binary systems studied. However, this methodology is unable to predict the trends obtained experimentally, limiting its use for systems involving amines in ionic liquids. The liquid-state structure of the binary mixture ([C2mim] [NTf2]+diethylamine) is also investigated by molecular dynamics simulation and neutron diffraction. Finally, the absorption of gaseous ethane by the ([C2mim][NTf2]+diethylamine) binary mixture is determined and compared with that observed in the pure solvents.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The influence of bottom topography on the distribution of temperature and salinity in the Indonesian seas region has been studied with a high-resolution model based on the Princeton Ocean Model. One of the distinctive properties of the model is an adequate reproduction of all major topographic features in the region by the model bottom relief. The three major routes of flow of Pacific water through the region have been identified. The western route follows the flow of North Pacific Water through the Sulawesi Sea, Makassar Strait, Flores Sea, and Banda Sea. This is the main branch of the Indonesian Throughflow. The eastern routes follow the flow of South Pacific water through the eastern Indonesian seas. This water enters the region either through the Halmahera Sea or by flowing to the north around Halmahera Island into the Morotai Basin and then into the Maluku Sea. A deep southward flow of South Pacific Water fills the Seram Sea below 1200 m through the Lifamatola Passage. As it enters the Seram Sea, this overflow turns eastward at depths greater than 2000 m, then upwells in the eastern part of the Seram Sea before returning westward at ~1500-2000 m. The flow continues westward across the Seram Sea, spreading to greater depths before entering the Banda Sea at the Buru-Mangole passage. It is this water that shapes the temperature and salinity of the deep Banda Sea. Topographic elevations break the Indonesian seas region down into separate basins. The difference in the distributions of potential temperature, ?, and salinity, S, in adjacent basins is primarily due to specific properties of advection of ? and S across a topographic rise. By and large, the topographic rise blocks deep flow between basins whereas water shallower than the depth of the rise is free to flow between basins. To understand this process, the structure of simulated fields of temperature and salinity has been analyzed. To identify a range of advected ? or S, special sections over the sills with isotherms or isohalines and isotachs of normal velocity have been considered. Following this approach the impact of various topographic rises on the distribution of ? and S has been identified. There are no substantial structural changes of potential temperature and salinity distributions between seasons, though values of some parameters of temperature and salinity distributions, e.g., magnitudes of maxima and minima, can change. It is shown that the main structure of the observed distributions of temperature and salinity is satisfactorily reproduced by the model throughout the entire domain.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Laser desorption of dye-tagged oligonucleotides was studied using laser-induced fluorescence imaging. Desorption with ultra violet (UV) and infra-red (IR) lasers resulted in forward directed plumes of molecules. In the case of UV desorption, the initial shot desorbed approximately seven-fold more material than subsequent shots. In contrast, the initial shot in IR desorption resulted in the ejection of less material compared to subsequent shots and these plumes had a component directed along the path of the laser. Thermal equilibrium of the molecules in the plume was achieved after approximately 25 µs with a spread in molecular temperature which was described by a modified Maxwell-Boltzmann equation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we seek to establish if earlier findings relating to the relationship between income poverty persistence and deprivation persistence could be due to a failure to take measurement error into account. To address this question, we apply a model of dynamics incorporating structural and error components. Our analysis shows a general similarity between latent poverty and deprivation dynamics. In both cases we substantially over-estimate the probability of exiting from poverty or deprivation. We observe a striking similarity across dimensions for both observed and latent outcomes. In both cases levels of poverty and deprivation persistence are higher for the latent case. However, there is no evidence that earlier results relating to the differences in the determinants of poverty and deprivation persistence are a consequence of differential patterns of reliability. Taking measurement error into account seems more likely to accentuate rather than diminish the contrasts highlighted by earlier research. Since longitudinal differences relating to poverty and deprivation cannot be accounted for by measurement error, it seems that we must accept that we are confronted with issues relating to validity rather than reliability. Even where we measure these dimensions over reasonable periods of time and allow for measurement error, they continue to tap relatively distinct phenomenon. Thus, if measures of persistent poverty are to constitute an important component of EU social indicators, a strong case can be made for including parallel measures of deprivation persistence and continuing to explore the relationship between them. © Springer Science+Business Media, Inc. 2006.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

UDP-galactose 4'-epimerase (GALE) catalyzes the interconversion of UDP-galactose and UDP-glucose, an important step in galactose catabolism. Type III galactosemia, an inherited metabolic disease, is associated with mutations in human GALE. The V94M mutation has been associated with a very severe form of type III galactosemia. While a variety of structural and biochemical studies have been reported that elucidate differences between the wildtype and this mutant form of human GALE, little is known about the dynamics of the protein and how mutations influence structure and function. We performed molecular dynamics simulations on the wildtype and V94M enzyme in different states of substrate and cofactor binding. In the mutant, the average distance between the substrate and both a key catalytic residue (Tyr157) and the enzyme-bound NAD(+) cofactor and the active site dynamics are altered making substrate binding slightly less stable. However, overall stability or dynamics of the protein is not altered. This is consistent with experimental findings that the impact is largely on the turnover number (kcat), with less substantial effects on Km. Active site fluctuations were found to be correlated in enzyme with substrate bound to just one of the subunits in the homodimer suggesting inter-subunit communication. Greater active site loop mobility in human GALE compared to the equivalent loop in Escherichia coli GALE explains why the former can catalyze the interconversion of UDP-N-acetylgalactosamine and UDP-N-acetylglucosamine while the bacterial enzyme cannot. This work illuminates molecular mechanisms of disease and may inform the design of small molecule therapies for type III galactosemia.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate the backflow of information in a system with a second-order structural phase transition, namely, a quasi-one-dimensional Coulomb crystal. Using standard Ramsey interferometry which couples a target ion (the system) to the rest of the chain (a phononic environment), we study the non-Markovian character of the resulting open system dynamics. We study two different time scales and show that the backflow of information pinpoints both the phase transition and different dynamical features of the chain as it approaches criticality. We also establish an exact link between the backflow of information and the Ramsey fringe visibility.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate periodic optomechanical arrays as reconfigurable platforms for engineering the coupling between multiple mechanical and electromagnetic modes and for exploring many-body phonon dynamics. Exploiting structural resonances in the coupling between light fields and collective motional modes of the array, we show that tunable effective long-range interactions between mechanical modes can be achieved. This paves the way towards the implementation of controlled phononic walks and heat transfer on densely connected graphs as well as the coherent transfer of excitations between distant elements of optomechanical arrays.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To gain insight into IL5 receptor subunit recruitment mechanism, and in particular the experimentally elusive pathway for assembly of signaling subunit beta(c), we constructed a soluble beta(c) ectodomain (s(beta)(c)) and developed an optical biosensor assay to measure its binding kinetics. Functionally active s(beta)(c) was anchored via a C-terminal His tag to immobilized anti-His monoclonal antibodies on the sensor surface. Using this surface, we quantitated for the first time direct binding of s(beta)(c) to IL5R(alpha) complexed to either wild-type or single-chain IL5. Binding was much weaker if at all with either R(alpha) or IL5 alone. Kinetic evaluation revealed a moderate affinity (0.2-1 microM) and relatively fast off rate for the s(beta)(c) interaction with IL5:R(alpha) complexes. The data support a model in which beta(c) recruitment occurs with preformed IL5:R(alpha) complex. Dissociation kinetics analysis suggests that the IL5-alpha-beta(c) complex is relatively short-lived. Overall, this study solidifies a model of sequential recruitment of receptor subunits by IL5, provides a novel biosensor binding assay of beta(c) recruitment dynamics, and sets the stage for more advanced characterization of the roles of structural elements within R(alpha), beta(c), and cytokines of the IL5/IL3/GM-CSF family in receptor recruitment and activation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2013

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tese de Doutoramento em Psicologia na área de especialização de Psicologia das Organizações apresentada ao ISPA - Instituto Universitário

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work describes the ab initio procedure employed to build an activation model for the alpha 1b-adrenergic receptor (alpha 1b-AR). The first version of the model was progressively modified and complicated by means of a many-step iterative procedure characterized by the employment of experimental validations of the model in each upgrading step. A combined simulated (molecular dynamics) and experimental mutagenesis approach was used to determine the structural and dynamic features characterizing the inactive and active states of alpha 1b-AR. The latest version of the model has been successfully challenged with respect to its ability to interpret and predict the functional properties of a large number of mutants. The iterative approach employed to describe alpha 1b-AR activation in terms of molecular structure and dynamics allows further complications of the model to allow prediction and interpretation of an ever-increasing number of experimental data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Jet-cooled, laser-induced phosphorescence excitation spectra (LIP) of thioacetaldehyde CH3CHS, CH3CDS, CD3CHS and CD3CDS have been observed over the region 15800 - 17300 cm"^ in a continuous pyrolysis jet. The vibronic band structure of the singlet-triplet n -* n* transition were attributed to the strong coupling of the methyl torsion and aldehydic hydrogen wagging modes . The vibronic peaks have been assigned in terms of two upper electronic state (T^) vibrations; the methyl torsion mode v^g, and the aldehydic hydrogen wagging mode v^^. The electronic origin O^a^ is unequivocally assigned as follows: CH3CHS (16294.9 cm"'' ), CH3CDS (16360.9 cm"'' ), CD3CHS (16299.7 cm"^ ), and CD3CDS (16367.2 cm"'' ). To obtain structural and dynamical information about the two electronic states, potential surfaces V(e,a) for the 6 (methyl torsion) and a (hydrogen wagging) motions were generated by ab initio quantum mechanical calculations with a 6-3 IG* basis in which the structural parameters were fully relaxed. The kinetic energy coefficients BQ(a,e) , B^(a,G) , and the cross coupling term B^(a,e) , were accurately represented as functions of the two active coordinates, a and 9. The calculations reveal that the molecule adopts an eclipsed conformation for the lower Sq electronic state (a=0°,e=0"') with a barrier height to internal rotation of 541.5 cm"^ which is to be compared to 549.8 cm"^ obtained from the microwave experiment. The conformation of the upper T^ electronic state was found to be staggered (a=24 . 68° ,e=-45. 66° ) . The saddle point in the path traced out by the aldehyde wagging motion was calculated to be 175 cm"^ above the equilibrium configuration. The corresponding maxima in the path taken by methyl torsion was found to be 322 cm'\ The small amplitude normal vibrational modes were also calculated to aid in the assignment of the spectra. Torsional-wagging energy manifolds for the two states were derived from the Hamiltonian H(a,e) which was solved variationally using an extended two dimensional Fourier expansion as a basis set. A torsionalinversion band spectrum was derived from the calculated energy levels and Franck-Condon factors, and was compared with the experimental supersonic-jet spectra. Most of the anomalies which were associated with the interpretation of the observed spectrum could be accounted for by the band profiles derived from ab initio SCF calculations. A model describing the jet spectra was derived by scaling the ab initio potential functions. The global least squares fitting generates a triplet state potential which has a minimum at (a=22.38° ,e=-41.08°) . The flatter potential in the scaled model yielded excellent agreement between the observed and calculated frequency intervals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This qualitative case study explored how the structural power imbalance in high performance sport influenced the bargaining process and resulting commercial rights and obligations of a single Canadian national sport organization’s (NSO1) Athlete Agreement. Principles comprising the doctrine of unconscionability, specifically the identification of a power imbalance between contracting parties, and the exploration of how that power imbalance influenced the terms of the contract, provided a framework to analyze factors influencing the commercial contents of NSO1’s Athlete Agreement. The results of this analysis revealed that despite the overarching influence of the inherent structural power imbalance on all aspects of NSO1 and its membership, an athletes’ level of commercial appeal can reach such heights as to balance the bargaining positions of both parties and subsequently influence the commercial contents of the Athlete Agreement.