944 resultados para Sol-gel synthesis


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Time-resolved X-ray absorption-fine structure (Quick-XAFS) and UV-Vis absorption spectroscopies were combined for monitoring simultaneously the time evolution of Zn-based species and ZnO quantum dot (Qdot) formation and growth during the sol-gel synthesis from zinc oxy-acetate precursor solution. The time evolution of the nanostructural features of colloidal suspension was independently monitored in situ by small angle X-ray scattering (SAXS). In both cases, the monitoring was initialized just after the addition of NaOH solution (B = [OH]/[Zn] = 0.5) to the precursor solution at 40 degrees C. Combined time-resolved Quick-XAFS and UV-Vis data showed that the formation of ZnO colloids from the zinc oxy-acetate consumption achieves a quasi-steady-state chemical equilibrium in less than 200s. Afterwards, the comparison of the ZnO Qdots size and Guinier gyration radius evidences a limited aggregation process coupled to the Qdots growth. The analysis of the experimental results demonstrates that the nanocrystal coalescence and Ostwald ripening control the kinetics of the Qdot growth.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Driven by the challenges involved in the development of new advanced materials with unusual drug delivery profiles capable of improving the therapeutic and toxicological properties of existing cancer chemotherapy, the one-pot sol-gel synthesis of flexible, transparent and insoluble urea-cross-linked polyether-siloxane hybrids has been recently developed. In this one-pot synthesis, the strong interaction between the antitumor cisplatin (CisPt) molecules and the ureasil-poly(propylene oxide) (PPO) hybrid matrix gives rise to the incorporation and release of an unknown CisPt-derived species, hindering the quantitative determination of the drug release pattern from the conventional UV-Vis absorption technique. In this article, we report the use of an original synchrotron radiation calibration method based on the combination of XAS and UV-Vis for the quantitative determination of the amount of Pt-based molecules released in water. Thanks to the combination of UV-Vis, XAS and Raman techniques, we demonstrated that both the CisPt molecules and the CisPt-derived species are loaded into an ureasil-PPO/ureasil-poly(ethylene oxide) (PEO) hybrid blend matrix. The experimentally determined molar extinction coefficient of the CisPt-derived species loaded into ureasil-PPO hybrid matrix enabled the simultaneous time-resolved monitoring of each Pt species released from this hybrid blend matrix.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The structure of zinc acetate derived precursor currently used in the sol-gel synthesis of ZnO nanoparticles is described. The reaction products obtained before and after reflux of ethanolic zinc acetate solution have been studied by UV-Vis, photoluminescence, FTIR and EXAFS at the Zn K edge. EXAFS results evidence for both precursor solutions a change from the octahedral coordination sphere of oxygen atoms characteristic of the solid zinc acetate dihydrate compound into a four-fold environment. The EXAFS spectra of precursor solutions can be satisfactorily reproduced using the molecular structure reported for Zn4O(Ac)(6) (Ac = COOCH3). UV-Vis and FTIR measurements are also in agreement with the formation of this oligomeric precursor. The structural modification is more pronounced after reflux at 80degreesC, because the increase of the Zn4O(Ac)(6) amount and the formation of nearly 3.0 nm sized ZnO nanoparticle.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The simultaneous formation of nanometer sized zinc oxide (ZnO), and acetate zinc hydroxide double salt (Zn-HDS) is described. These phases, obtained using the sol-gel synthesis route based on zinc acetate salt in alcoholic media, were identified by direct characterization of the reaction products in solution using complementary techniques: nephelometry, in situ Small-Angle X-ray Scattering (SAXS), UV-Vis spectroscopy and Extended X-ray Absorption Fine Structures (EXAFS). In particular, the hydrolytic pathway of ethanolic zinc acetate precursor solutions promoted by addition of water with the molar ratio N = [H2O]/[Zn2+] = 0.05 was investigated in this paper. The aim was to understand the formation mechanism of ZnO colloidal suspension and to reveal the factors responsible for the formation of Zn-HDS in the final precipitates. The growth mechanism of ZnO nanoparticles is based on primary particle (radius approximate to 1.5 nm) rotation inside the primary aggregate (radius < 3.5 nm) giving rise to an epitaxial attachment of particles and then subsequent coalescence. The growth of second ZnO aggregates is not associated with the Otswald ripening, and could be associated with changes in equilibrium between solute species induced by the superficial etching of Zn-HDS particles at the advanced stage of kinetic.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study involved the synthesis of photocatalysts based on titanium dioxide (TiO2). The photocatalysts were synthesized by the sol-gel method using three different proportions of acetone (25%, 50% and 75% v/v) in water/acetone mixtures, in order to control the hydrolysis of the precursor of titanium (titanium tetraisopropoxide). Aiming to investigate the structural, morphological and electronic changes provoked by the use of the solvent mixtures, different methodologies were used to characterize the oxides, such as X-ray diffraction (XRD), RAMAN spectroscopy, UV-Vis diffuse reflectance spectroscopy, and measurements of specific surface area (BET). XRD combined to RAMAN analyses revealed that the products are two-phase highly crystalline oxides involving anatase as main phase and brookite. Besides, the refined XRD using the method of Rietveld demonstrated that the presence of acetone during the synthesis influenced in the composition of the crystalline phases, increasing the proportion of the brookite phase between 13 and 22%. The band gap energy of these oxides practically did not suffer changes as function of the synthesis conditions. As shown by the isotherm, these photocatalysts are mesoporous materials with mean diameter of pores of 7 nm and approximately 20% of porosity. The surface area of the oxides prepared by hydrolysis in presence of acetone was 12% higher compared to the bare oxide. After characterized, these oxides had their photocatalytic activities evaluated by photodegradation of the azo dyes Ponceau 4R (P4R), Tartrazine (TTZ) and Reactive Red 120 (RR120), and also by the ability to mediate the photocatalytic production of hydrogen. Using the most efficient photocatalyst, the mineralization achieved for the dyes P4R, RR120 and TTZ was of respectively 83%, 79% and 56% in 120 minutes of reaction, while the discoloration of P4R e RR120 reached 100% and 94% for TTZ. In addition, the same photocatalyst in the presence of 0.5% w/w of Platinum and suspended in a 5:1 v/v water/methanol mixture, produced 56 mmol of gaseous hydrogen in five hours of experiment, corresponding to a specific rate of hydrogen production of 139.5 mmol h-1 g-1.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The sol-gel synthesis and characterization of n≥3n≥3 Aurivillius phase thin filmsdeposited on Pt/Ti/SiO2–SiPt/Ti/SiO2–Si substrates is described. The number of perovskite layers, nn, was increased by inserting BiFeO3BiFeO3 into three layered Aurivillius phase Bi4Ti3O12Bi4Ti3O12 to form compounds such as Bi5FeTi3O15Bi5FeTi3O15 (n=4)(n=4). 30% of the Fe3+Fe3+ ions in Bi5FeTi3O15Bi5FeTi3O15 were substituted with Mn3+Mn3+ ions to form the structureBi5Ti3Fe0.7Mn0.3O15Bi5Ti3Fe0.7Mn0.3O15. The electromechanical responses of the materials were investigated using piezoresponse force microscopy and the results are discussed in relation to the crystallinity of the films as measured by x-ray diffraction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The increased longevity of humans and the demand for a better quality of life have led to a continuous search for new implant materials. Scientific development coupled with a growing multidisciplinarity between materials science and life sciences has given rise to new approaches such as regenerative medicine and tissue engineering. The search for a material with mechanical properties close to those of human bone produced a new family of hybrid materials that take advantage of the synergy between inorganic silica (SiO4) domains, based on sol-gel bioactive glass compositions, and organic polydimethylsiloxane, PDMS ((CH3)2.SiO2)n, domains. Several studies have shown that hybrid materials based on the system PDMS-SiO2 constitute a promising group of biomaterials with several potential applications from bone tissue regeneration to brain tissue recovery, passing by bioactive coatings and drug delivery systems. The objective of the present work was to prepare hybrid materials for biomedical applications based on the PDMS-SiO2 system and to achieve a better understanding of the relationship among the sol-gel processing conditions, the chemical structures, the microstructure and the macroscopic properties. For that, different characterization techniques were used: Fourier transform infrared spectrometry, liquid and solid state nuclear magnetic resonance techniques, X-ray diffraction, small-angle X-ray scattering, smallangle neutron scattering, surface area analysis by Brunauer–Emmett–Teller method, scanning electron microscopy and transmission electron microscopy. Surface roughness and wettability were analyzed by 3D optical profilometry and by contact angle measurements respectively. Bioactivity was evaluated in vitro by immersion of the materials in Kokubos’s simulated body fluid and posterior surface analysis by different techniques as well as supernatant liquid analysis by inductively coupled plasma spectroscopy. Biocompatibility was assessed using MG63 osteoblastic cells. PDMS-SiO2-CaO materials were first prepared using nitrate as a calcium source. To avoid the presence of nitrate residues in the final product due to its potential toxicity, a heat-treatment step (above 400 °C) is required. In order to enhance the thermal stability of the materials subjected to high temperatures titanium was added to the hybrid system, and a material containing calcium, with no traces of nitrate and the preservation of a significant amount of methyl groups was successfully obtained. The difficulty in eliminating all nitrates from bulk PDMS-SiO2-CaO samples obtained by sol-gel synthesis and subsequent heat-treatment created a new goal which was the search for alternative sources of calcium. New calcium sources were evaluated in order to substitute the nitrate and calcium acetate was chosen due to its good solubility in water. Preparation solgel protocols were tested and homogeneous monolithic samples were obtained. Besides their ability to improve the bioactivity, titanium and zirconium influence the structural and microstructural features of the SiO2-TiO2 and SiO2-ZrO2 binary systems, and also of the PDMS-TiO2 and PDMS-ZrO2 systems. Detailed studies with different sol-gel conditions allowed the understanding of the roles of titanium and zirconium as additives in the PDMS-SiO2 system. It was concluded that titanium and zirconium influence the kinetics of the sol-gel process due to their different alkoxide reactivity leading to hybrid xerogels with dissimilar characteristics and morphologies. Titanium isopropoxide, less reactive than zirconium propoxide, was chosen as source of titanium, used as an additive to the system PDMS-SiO2-CaO. Two different sol-gel preparation routes were followed, using the same base composition and calcium acetate as calcium source. Different microstructures with high hydrophobicit were obtained and both proved to be biocompatible after tested with MG63 osteoblastic cells. Finally, the role of strontium (typically known in bioglasses to promote bone formation and reduce bone resorption) was studied in the PDMS-SiO2-CaOTiO2 hybrid system. A biocompatible material, tested with MG63 osteoblastic cells, was obtained with the ability to release strontium within the values reported as suitable for bone tissue regeneration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mesoporous spinel membranes as ultrafiltration membranes were prepared through a novel sol-gel technique. By in situ modification of the sol particle surface during the sol-gel process, control of the material structure on a nanometer scale from the earliest stages of processing was realized. Nano-particles with a chocolate-nut-like morphology, i.e. spinel MgAl2O4 as a shell and gamma -Al2O3 as a core, were first revealed by HRTEM results. The formation of the spinel phase was confirmed by X-ray diffraction (XRD). N-2 adsorption-desorption results showed that the mesoporous membranes had a narrow pore size distribution. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)