950 resultados para Shiga-toxin


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Skin-draining LN contain several phenotypically distinguishable DC populations, which may be immature or mature. Mature DC are generally considered to have lost the capacity to acquire and present newly encountered Ag. Using antibody-opsonized liposomes as Ag carriers, we show that mature DC purified from skin explants are able to efficiently capture liposomes, process Ag encapsulated within them and activate Ag-specific CD4(+) T cells. Explant DC from mice with Langerhans cells (LC) expressing the primate diphtheria toxin receptor that were exposed to diphtheria toxin in vivo presented Ag as well as explant DC from wild-type mice, indicating that LC are not required and dermal DC are probably responsible for this presentation. We further show that all DC subtypes from LN that capture opsonized Ag are capable of cross-presenting it to CD8(+) T cells. Induction of additional maturation in vivo by LPS or treatment with double-stranded RNA did not alter the Ag presentation capacity of the skin or LN DC subtypes. These results suggest that mature DC present in skin-draining LN may play an important role in the induction of primary and/or secondary immune responses against Ag delivered to the LN that they take up by receptor-mediated endocytosis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Macrophage migration inhibitory factor (MIF), one of the first cytokines to be discovered, has recently been localized to the Leydig cells in adult rat testes. In the following study, the response of MIF to Leydig cell ablation by the Leydig cell-specific toxin ethane dimethane sulfonate (EDS) was examined in adult male rats. Testicular MIF mRNA and protein in testicular interstitial fluid measured by ELISA and western blot were only marginally reduced by EDS treatment, in spite of the fact that the Leydig cells were completely destroyed within 7 days. Immunohistochemistry using an affinity-purified anti-mouse MIF antibody localized MIF exclusively to the Leydig cells in control testes. At 7 days post-EDS treatment, there were no MIF immunopositive Leydig cells in the interstitium, although distinct MIF immunostaining was observed in the seminiferous tubules, principally in Sertoli cells and residual cytoplasm, and some spermatogonia. A few peritubular and perivascular cells were also labelled at this time, which possibly represented mesenchymal Leydig cell precursors. At 14 and 21 days, Sertoli cell MIF immunoreactivity was observed in only a few tubule cross-sections, while some peritubular and perivascular mesenchymal cells and the re-populating immature Leydig cells were intensely labeled. At 28 days after EDS-treatment, the MIF immunostaining pattern was identical to that of untreated and control testes. The switch in the compartmentalization of MIF protein at 7 days after EDS-treatment was confirmed by western blot analysis of interstitial tissue and seminiferous tubules separated by mechanical dissection. These data establish that Leydig cell-depleted testes continue to produce MIF, and suggest the existence of a mechanism of compensatory cytokine production involving the Sertoli cells. This represents the first demonstration of a hitherto unsuspected pattern of cellular interaction between the Leydig cells and the seminiferous tubules which is consistent with an essential role for MIF in male testicular function.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gene gun immunization, i.e., bombardment of skin with DNA-coated particles, is an efficient method for the administration of DNA vaccines. Direct transfection of APC or cross-presentation of exogenous Ag acquired from transfected nonimmune cells enables MHC-I-restricted activation of CD8(+) T cells. Additionally, MHC-II-restricted presentation of exogenous Ag activates CD4(+) Th cells. Being the principal APC in the epidermis, Langerhans cells (LC) seem ideal candidates to accomplish these functions. However, the dependence on LC of gene gun-induced immune reactions has not yet been demonstrated directly. This was primarily hampered by difficulties to discriminate the contributions of LC from those of other dermal dendritic cells. To address this problem, we have used Langerin-diphtheria toxin receptor knockin mice that allow for selective inducible ablation of LC. LC deficiency, even over the entire duration of experiments, did not affect any of the gene gun-induced immune functions examined, including proliferation of CD4(+) and CD8(+) T cells, IFN-gamma secretion by spleen cells, Ab production, CTL activity, and development of protective antitumor immunity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The detection of paralytic shellfish poisoning (PSP) toxins in contaminated shellfish is essential for human health preservation. Ethical and technical reasons have prompted the search for new detection procedures as an alternative to the mouse bioassay. On the basis of the detection of molecular interactions by surface plasmon resonance (SPR) biosensors, an inhibition assay was developed using an anti-GTX2/3 antibody (GT13-A) and a saxitoxin-CM5 chip. This assay allowed for quantification of saxitoxin (STX), decarbamoyl saxitoxin (dcSTX), gonyautoxin 2,3 (GTX2/3), decarbamoyl gonyautoxin 2,3 (dcGTX2/3), gonyautoxin 5 (GTX5), and C 1,2 (C1/2) at concentrations from 2 to 50 ng/mL. The interference of five shellfish matrixes with the inhibition assay was analyzed. Mussels, clams, cockles, scallops, and oysters were extracted with five published methods. Ethanol extracts and acetic acid/heat extracts (AOAC Lawrence method) performed adequately in terms of surface regeneration and baseline interference, did not inhibit antibody binding to the chip surface significantly, and presented STX calibration curves similar to buffer controls in all matrixes tested. Hydrochloric acid/heat extracts (AOAC mouse bioassay method) presented surface regeneration problems, and although ethanol-acetic acid/dichloromethane extracts performed well, they were considered too laborious for routine sample testing. Overall the best results were obtained with the ethanol extraction method with calibration curves prepared in blank matrix extracts. STX recovery rate with the ethanol extraction method was 60.52 ± 3.72%, with variations among species. The performance of this biosensor assay in natural samples, compared to two AOAC methods for PSP toxin quantification (mouse bioassay and HPLC), suggests that this technology can be useful as a PSP screening assay. In summary, the GT13-A-STX chip inhibition assay is capable of PSP toxin detection in ethanol shellfish extracts, with sufficient sensitivity to quantify the toxin in the range of the European regulatory limit of 80 g/100 g of shellfish meat.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Langerhans cells (LCs) are antigen-presenting cells that reside in the epidermis of the skin and traffic to lymph nodes (LNs). The general role of these cells in skin immune responses is not clear because distinct models of LC depletion resulted in opposite conclusions about their role in contact hypersensitivity (CHS) responses. While comparing these models, we discovered a novel population of LCs that resides in the dermis and does not represent migrating epidermal LCs, as previously thought. Unlike epidermal LCs, dermal Langerin(+) dendritic cells (DCs) were radiosensitive and displayed a distinct cell surface phenotype. Dermal Langerin(+) DCs migrate from the skin to the LNs after inflammation and in the steady state, and represent the majority of Langerin(+) DCs in skin draining LNs. Both epidermal and dermal Langerin(+) DCs were depleted by treatment with diphtheria toxin in Lang-DTREGFP knock-in mice. In contrast, transgenic hLang-DTA mice lack epidermal LCs, but have normal numbers of dermal Langerin(+) DCs. CHS responses were abrogated upon depletion of both epidermal and dermal LCs, but were unaffected in the absence of only epidermal LCs. This suggests that dermal LCs can mediate CHS and provides an explanation for previous differences observed in the two-model systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Langerhans cells (LCs) constitute a subset of dendritic cells (DCs) that express the lectin langerin and that reside in their immature state in epidermis. Paradoxically, in mice permitting diphtheria toxin (DT)-mediated ablation of LCs, epidermal LCs reappeared with kinetics that lagged behind that of their putative progeny found in lymph nodes (LNs). Using bone marrow (BM) chimeras, we showed that a major fraction of the langerin(+), skin-derived DCs found in LNs originates from a developmental pathway that is independent from that of epidermal LCs. This pathway, the existence of which was unexpected, originates in the dermis and gives rise to langerin(+) dermal DCs (DDCs) that should not be confused with epidermal LCs en route to LNs. It explains that after DT treatment, some langerin(+), skin-derived DCs reappear in LNs long before LC-derived DCs. Using CD45 expression and BrdU-labeling kinetics, both LCs and langerin(+) DDCs were found to coexist in wild-type mice. Moreover, DT-mediated ablation of epidermal LCs opened otherwise filled niches and permitted repopulation of adult noninflammatory epidermis with BM-derived LCs. Our results stress that the langerin(+) DC network is more complex than originally thought and have implications for the development of transcutaneous vaccines and the improvement of humanized mouse models.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There are conflicting data in the literature regarding the role of epidermal Langerhans cells (LC) in promoting skin immune responses. On one hand, LC can be extremely potent APCs in vitro, and are thought to be involved in contact hypersensitivity (CHS). On the other hand, it seems counterintuitive that a cell type continually exposed to pathogens at the organism\'s barrier surfaces should readily trigger potent T cell responses. Indeed, LC depletion in one model led to enhanced contact hypersensitivity, suggesting they play a negative regulatory role. However, apparently similar LC depletion models did not show enhanced CHS, and in one case showed reduced CHS. In this study we found that acute depletion of mouse LC reduced CHS, but the timing of toxin administration was critical: toxin administration 3 days before priming did not impair CHS, whereas toxin administration 1 day before priming did. We also show that LC elimination reduced the T cell response to epicutaneous immunization with OVA protein Ag. However, this reduction was only observed when OVA was applied on the flank skin, and not on the ear. Additionally, peptide immunization was not blocked by depletion, regardless of the site. Finally we show that conditions which eliminate epidermal LC but spare other Langerin(+) DC do not impair the epicutaneous immunization response to OVA. Overall, our results reconcile previous conflicting data in the literature, and suggest that Langerin(+) cells do promote T cell responses to skin Ags, but only under defined conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Full-length transient receptor potential (TRP) cation channel TRPC4alpha and shorter TRPC4beta lacking 84 amino acids in the cytosolic C terminus are expressed in smooth muscle and endothelial cells where they regulate membrane potential and Ca(2+) influx. In common with other "classical" TRPCs, TRPC4 is activated by G(q)/phospholipase C-coupled receptors, but the underlying mechanism remains elusive. Little is also known about any isoform-specific channel regulation. Here we show that TRPC4alpha but not TRPC4beta was strongly inhibited by intracellularly applied phosphatidylinositol 4,5-bisphosphate (PIP(2)). In contrast, several other phosphoinositides (PI), including PI(3,4)P(2), PI(3,5)P(2), and PI(3,4,5)P(3), had no effect or even potentiated TRPC4alpha indicating that PIP(2) inhibits TRPC4alpha in a highly selective manner. We show that PIP(2) binds to the C terminus of TRPC4alpha but not that of TRPC4beta in vitro. Its inhibitory action was dependent on the association of TRPC4alpha with actin cytoskeleton as it was prevented by cytochalasin D treatment or by the deletion of the C-terminal PDZ-binding motif (Thr-Thr-Arg-Leu) that links TRPC4 to F-actin through the sodium-hydrogen exchanger regulatory factor and ezrin. PIP(2) breakdown appears to be a required step in TRPC4alpha channel activation as PIP(2) depletion alone was insufficient for channel opening, which additionally required Ca(2+) and pertussis toxin-sensitive G(i/o) proteins. Thus, TRPC4 channels integrate a variety of G-protein-dependent stimuli, including a PIP(2)/cytoskeleton dependence reminiscent of the TRPC4-like muscarinic agonist-activated cation channels in ileal myocytes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The biological role of Langerin(+) dendritic cells (DCs) such as Langerhans cells and a subset of dermal DCs (dDCs) in adaptive immunity against cutaneous pathogens remains enigmatic. Thus, we analyzed the impact of Langerin(+) DCs in adaptive T cell-mediated immunity toward Leishmania major parasites in a Lang-DTR mouse model that allows conditional diphtheria toxin (DT)-induced ablation of The biological role of Langerin+ dendritic cells (DCs) such as Langerhans cells and a subset of dermal DCs (dDCs) in adaptive immunity against cutaneous pathogens remains enigmatic. Thus, we analyzed the impact of Langerin+ DCs in adaptive T cell-mediated immunity toward Leishmania major parasites in a Lang-DTR mouse model that allows conditional diphtheria toxin (DT)-induced ablation of Langerin+ DCs in vivo. For the first time, infection experiments with DT-treated Lang-DTR mice revealed that proliferation of L. major-specific CD8+ T cells is significantly reduced during the early phase of the immune response following depletion of Langerin+ DCs. Consequently, the total number of activated CD8+ T cells within the draining lymph node and at the site of infection is diminished. Furthermore, we show that the impaired CD8+ T cell response is due to the absence of Langerin+ dDCs and not Langerhans cells. Nevertheless, the CD4+ T cell response is not altered and the infection is cleared as effectively in DT-treated Lang-DTR mice as in control mice. This clearly demonstrates that Langerin+ DCs are, in general, dispensable for an efficient adaptive immune response against L. major parasites. Thus, we propose a novel concept that, in the experimental model of leishmaniasis, priming of CD4+ T cells is mediated by Langerin− dDCs, whereas Langerin+ dDCs are involved in early priming of CD8+ T cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Langerhans cells (LCs) are dendritic cells (DCs) localized in stratified epithelia, such as those overlaying skin, buccal mucosa, and vagina. The contribution of LCs to the promotion or control of immunity initiated at epithelial sites remains debated. We report in this paper that an immunogen comprising OVA linked to the B subunit of cholera toxin, used as delivery vector, was efficient to generate CTLs after vaginal immunization. Using Lang-EGFP mice, we evaluated the contribution of distinct DC subsets to the generation of CD4 and CD8 T cell responses. We demonstrate that the vaginal epithelium, unlike the skin epidermis, includes a minor population of LCs and a major subset of langerin(-) DCs. Intravaginally administered Ag is taken up by LCs and langerin(-) DCs and carried up to draining lymph nodes, where both subsets prime CD8 T cells, unlike blood-derived DCs, although with distinct capabilities. LCs prime CD8 T cells with a cytokine profile dominated by IL-17, whereas Lang(-) DCs induce IFN-gamma-producing T cells. Using Lang-DTR-EGFP mice to ensure a transient ablation of LCs, we found that these cells not only are dispensable for the generation of genital CTL responses but also downregulate these responses, by a mechanism that may involve IL-10 and IL-17 cytokines. This finding has implications for the development of mucosal vaccines and immunotherapeutic strategies designed for the targeting of DCs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The origin and evolution of venom proteins in helodermatid lizards were investigated by multidisciplinary techniques. Our analyses elucidated novel toxin types resultant from three unique domain-expression processes: 1) The first full-length sequences of lethal toxin isoforms (helofensins) revealed this toxin type to be constructed by an ancestral monodomain, monoproduct gene (beta-defensin) that underwent three tandem domain duplications to encode a tetradomain, monoproduct with a possible novel protein fold; 2) an ancestral monodomain gene (encoding a natriuretic peptide) was medially extended to become a pentadomain, pentaproduct through the additional encoding of four tandemly repeated proline-rich peptides (helokinestatins), with the five discrete peptides liberated from each other by posttranslational proteolysis; and 3) an ancestral multidomain, multiproduct gene belonging to the vasoactive intestinal peptide (VIP)/glucagon family being mutated to encode for a monodomain, monoproduct (exendins) followed by duplication and diversification into two variant classes (exendins 1 and 2 and exendins 3 and 4). Bioactivity characterization of exendin and helokinestatin elucidated variable cardioactivity between isoforms within each class. These results highlight the importance of utilizing evolutionary-based search strategies for biodiscovery and the virtually unexplored potential of lizard venoms in drug design and discovery.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Paralytic shellfish poisoning (PSP) toxin monitoring in shellfish is currently performed using the internationally accredited AOAC mouse bioassay. Due to ethical and performance-related issues associated with this bioassay, the European Commission has recently published directives extending procedures that may be used for official PSP control. The feasibility of using a surface plasmon resonance optical biosensor to detect PSP toxins in shellfish tissue below regulatory levels was examined. Three different PSP toxin protein binders were investigated: a sodium channel receptor (SCR) preparation derived from rat brains, a monoclonal antibody (GT13-A) raised to gonyautoxin 2/3, and a rabbit polyclonal antibody (R895) raised to saxitoxin (STX). Inhibition assay formats were used throughout. Immobilization of STX to the biosensor chip surface was achieved via amino-coupling. Specific binding and inhibition of binding to this surface was achieved using all proteins tested. For STX calibration curves, 0 - 1000 ng/mL, IC50 values for each binder were as follows: SCR 8.11 ng/mL; GT13-A 5.77 ng/mL; and R895 1.56 ng/mL. Each binder demonstrated a different cross-reactivity profile against a range of STX analogues. R895 delivered a profile that was most likely to detect the widest range of PSP toxins at or below the internationally adopted regulatory limits.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The mouse bioassay is the methodology that is most widely used to detect okadaic acid (OA) in shellfish samples. This is one of the best-known toxins, and it belongs to the family of marine biotoxins referred to as the diarrhetic shellfish poisons (DSP). Due to animal welfare concerns, alternative methods of toxin detection are being sought. A rapid and specific biosensor immunoassay method was developed and validated for the detection of OA. An optical sensor instrument based on the surface plasmon resonance (SPR) phenomenon was utilised. A polyclonal antibody to OA was raised against OA-bovine thyroglobulin conjugate and OA-N-hydroxy succinimide ester was immobilised onto an amine sensor chip surface. The assay parameters selected for the analysis of the samples were: antibody dilution, 1/750; ratio of antibody to standard, 1:1; volume of sample injected, 25 mu l min(-1); flow rate, 25 mu l min(-1). An assay action limit of 126 ng g(-1) was established by analysing of 20 shellfish samples spiked with OA at the critical concentration of 160 ng g(-1), which is the action limit established by the European Union (EU). At this concentration of OA, the assay delivered coefficient of variations (CVs) of

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A rapid and sensitive immuno-based screening method was developed to detect domoic acid (DA) present in extracts of shellfish species using a surface plasmon resonance-based optical biosensor. A rabbit polyclonal antibody raised against DA was mixed with standard or sample extracts and allowed to interact with DA immobilized onto a sensor chip surface. The characterization of the antibody strongly suggested high cross-reactivity with DA and important isomers of the toxin. The binding of this antibody to the sensor chip surface was inhibited in the presence of DA in either standard solutions or sample extracts. The DA chip surface proved to be highly stable, achieving approximately 800 analyses per chip without any loss of surface activity. A single analytical cycle (sample injection, chip regeneration, and system wash) took 10 min to complete. Sample analysis (scallops, mussels, cockles, oysters) was achieved by simple extraction with methanol. These extracts were then filtered and diluted before analysis. Detection limits in the ng/g range were achieved by the assay; however, the assay parameters chosen allowed the test to be performed most accurately at the European Union's official action limit for DA of 20 mu g/g. At this concentration, intra- and interassay variations were measured for a range of shellfish species and ranged from 4.5 to 7.4% and 2.3 to 9.7%, respectively.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There is an increasing demand to develop biosensor monitoring devices capable of biomarker profiling for predicting animal adulteration and detecting multiple chemical contaminants or toxins in food produce. Surface plasmon resonance (SPR) biosensors are label free detection systems that monitor the binding of specific biomolecular recognition elements with binding partners. Essential to this technology are the production of biochips where a selected binding partner, antibody, biomarker protein or low molecular weight contaminant, is immobilised. A micro-fluidic immobilisation device allowing the covalent attachment of up to 16 binding partners in a linear array on a single surface has been developed for compatibility with a prototype multiplex SPR analyser.

The immobilisation unit and multiplex SPR analyser were respectively evaluated in their ability to be fit-for-purpose for binding partner attachment and detection of high and low molecular weight molecules. The multiplexing capability of the dual technology was assessed using phycotoxin concentration analysis as a model system. The parent compounds of four toxin groups were immobilised within a single chip format and calibration curves were achieved. The chip design and SPR technology allowed the compartmentalisation of the binding interactions for each toxin group offering the added benefit of being able to distinguish between toxin families and perform concentration analysis. This model is particularly contemporary with the current drive to replace biological methods for phycotoxin screening.