906 resultados para Satellite solar power stations.


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The advancement in solar photovoltaic (PV) technology, the cost and efficiency of PVs have encouraged users worldwide to adopt more and more PVs as it is free from greenhouse gas emissions and unlimited in nature. Integration of roof-top solar PV systems is currently emerging rapidly in Australia as the governments are giving attractive incentives and encouraging households to build a sustainable climate-friendly society for the future. The key major barriers to the integration of roof-top solar PV systems are the uncertainties in the performance of the low voltage distribution network due to the intermittent nature of solar PV sources. In this paper, a model was developed to investigate the potential technical impacts of integrating roof-top solar PV systems into the low voltage distribution network in a subtropical climate. The results show that integration of roof-top solar PV in the customer premises causes uncertainties such as voltage fluctuations, phase unbalance, distribution transformer overloading, reactive power compensation, and harmonic injections that detract the overall power quality of the typical distribution network. © 2014 AIP Publishing LLC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a robust nonlinear distributed controller design for islanded operation of microgrids in order to maintain active and reactive power balance. In this paper, microgrids are considered as inverter-dominated networks integrated with renewable energy sources (RESs) and battery energy storage systems (BESSs), where solar photovoltaic generators act as RESs and plug-in hybrid electric vehicles as BESSs to supply power into the grid. The proposed controller is designed by using partial feedback linearization and the robustness of this control scheme is ensured by considering structured uncertainties within the RESs and BESSs. An approach for modeling the uncertainties through the satisfaction of matching conditions is also provided in this paper. The proposed distributed control scheme requires information from local and neighboring generators to communicate with each other and the communication among RESs, BESSs, and control centers is developed by using the concept of the graph theory. Finally, the performance of the proposed robust controller is demonstrated on a test microgrid and simulation results indicate the superiority of the proposed scheme under different operating conditions as compared to a linear-quadratic-regulator-based controller.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Today’s power system network has become more complex and it has more responsibilities and challenges to provide secure, reliable and quality energysupply to the communities. A small entity of electrical network known as Microgrid (MG) is more popular nowadays to enhance reliablity and secure level of energy supply, in case of any energy crisis in the utility network. The MG can also provide clean energy supply by integrating renewable energy sources effectively. TheMG with small scale solar photovoltaic (PV) power system is more suitable to provide reliable and clean energy supply for remote or urban communities in residential level. This paper presents the basic analysis study of stand-alone solar photovoltaic (PV) MG power system which has been developed with the aid of Matlab - Simulink software, on the basis of residential load profile and solar exposure level in a particular area of Geelong, Victoria State. The simulation result depicts the control behavior of MG power system with optimum sizing of PV (4.385 kW)and battery storage (480Ah/48V) facility, fulfills daily energy needs in residential load level. This study provides a good platform to develop an effective and reliable stand-alone MG power system for the remote communities in the near future.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Due to the increasing world energy demand, renewable energy systems have been significantly applied in the power generation sector. Among the renewable energy options, photovoltaic system is one of the most popular resources which has been experiencing a huge attention during recent decades. The remarkable advantages, such as static and movement free characteristics, low maintenance costs, and longevity are the primary factors for the popularity of solar generation in the late years. Nevertheless, the low PV conversion efficiency in one side and high PV material cost in the other side have made PV generation comparably expensive system. Consequently, a capable maximum power point tracking (MPPT) is all important to elicit the maximum energy from the production of PV systems. Different researches have been conducted to design a fast, simple and robust MPPT technique under uniform conditions. However, due to the series and parallel connection of PV modules and according to the use of bypass diodes, in the structure of PV modules, a conventional techniques are unable to track a true MPP. Recently, several studies have been undertaken to modify these conventional methods and enable them to track the global MPP under rapidly changing environments and partial shading (PS) conditions. This report concentrates on the state of the art of these methods and their evolution to apply under PS conditions. The recent developments and modifications are analyzed through a comparison based on design complexity, cost, speed and the ability to track the MPP under rapid environmental variations and PS conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, a nonlinear backstepping controller is designed for three-phase grid-connected solar photovoltaic (PV) systems to share active and reactive power. A cascaded control structure is considered for the purpose of sharing appropriate amount of power. In this cascaded control structure, the dc-link voltage controller is designed for balancing the power flow within the system and the current controller is designed to shape the grid current into a pure sinusoidal waveform. In order to balance the power flow, it is always essential to maintain a constant voltage across the dc-link capacitor for which an incremental conductance (IC) method is used in this paper. This approach also ensures the operation of solar PV arrays at the maximum power point (MPP) under rapidly changing atmospheric conditions. The proposed current controller is designed to guarantee the current injection into the grid in such a way that the system operates at a power factor other than unity which is essential for sharing active and reactive power. The performance of the proposed backstepping approach is verified on a three-phase grid-connected PV system under different atmospheric conditions. Simulation results show the effectiveness of the proposed control scheme in terms of achieving desired control objectives.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Jakarta is vulnerable to flooding mainly caused by prolonged and heavy rainfall and thus a robust hydrological modeling is called for. A good quality of spatial precipitation data is therefore desired so that a good hydrological model could be achieved. Two types of rainfall sources are available: satellite and gauge station observations. At-site rainfall is considered to be a reliable and accurate source of rainfall. However, the limited number of stations makes the spatial interpolation not very much appealing. On the other hand, the gridded rainfall nowadays has high spatial resolution and improved accuracy, but still, relatively less accurate than its counterpart. To achieve a better precipitation data set, the study proposes cokriging method, a blending algorithm, to yield the blended satellite-gauge gridded rainfall at approximately 10-km resolution. The Global Satellite Mapping of Precipitation (GSMaP, 0.1⁰×0.1⁰) and daily rainfall observations from gauge stations are used. The blended product is compared with satellite data by cross-validation method. The newly-yield blended product is then utilized to re-calibrate the hydrological model. Several scenarios are simulated by the hydrological models calibrated by gauge observations alone and blended product. The performance of two calibrated hydrological models is then assessed and compared based on simulated and observed runoff.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conferências internacionais sobre o clima, bem como crescente conscientização sobre as questões de sustentabilidade lançaram luz sobre o papel fundamental que as energias renováveis poderiam desempenhar na transição energética. Ao contrário de combustíveis fósseis, elas podem ser regeneradas em um curto período de tempo e, por conseguinte, espera-se que sejam uma parte da solução para reduzir o aquecimento global. O Brasil sempre teve um forte setor hidrelétrico, mas agora está na vanguarda em relação a todas as outras fontes de energias alternativas, como energia eólica, biomassa o energia solar. Estas indústrias são uma promessa para um futuro próspero, graças ao potencial natural do país, bem como uma legislação de apoio, e estão atraindo muitas empresas locais e internacionais. Este estudo tem como objetivo preencher uma lacuna na literatura analisando o exemplo de uma empresa estrangeira que entra no mercado da energia renovável no Brasil. Baseando-se na literatura como um fundo conceptual, um único estudo de caso têm sido realizados para delinear todos os aspectos do processo de entrada. Neste desenvolvimento, relações causais entre as orientações estratégicas e a evolução do negócio foram identificadas. Esta pesquisa traz uma contribuição para as discussões acadêmicas sobre as dinâmicas de entrada no setor de energia renovável através de evidências do mercado brasileiro.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The rural electrification is characterized by geographical dispersion of the population, low consumption, high investment by consumers and high cost. Moreover, solar radiation constitutes an inexhaustible source of energy and in its conversion into electricity photovoltaic panels are used. In this study, equations were adjusted to field conditions presented by the manufacturer for current and power of small photovoltaic systems. The mathematical analysis was performed on the photovoltaic rural system I- 100 from ISOFOTON, with power 300 Wp, located at the Experimental Farm Lageado of FCA/UNESP. For the development of such equations, the circuitry of photovoltaic cells has been studied to apply iterative numerical methods for the determination of electrical parameters and possible errors in the appropriate equations in the literature to reality. Therefore, a simulation of a photovoltaic panel was proposed through mathematical equations that were adjusted according to the data of local radiation. The results have presented equations that provide real answers to the user and may assist in the design of these systems, once calculated that the maximum power limit ensures a supply of energy generated. This real sizing helps establishing the possible applications of solar energy to the rural producer and informing the real possibilities of generating electricity from the sun.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The generation of electricity in Brazil is predominantly renewable, with internal hydraulic generation being more than 70% of its energy matrix. The electricity rationing occurred in 2001 due to lack of rain, led the country to increase the participation of alternative energy sources. This need for new sources of energy makes the regional potential to be exploited, which configures the change of generation model from centralized generation to distributed generation. Among the alternative sources of energy, the solar energy is presented as very promising for Brazil, given that most of its territory is located near to the equator line, which implies days with greater number of hours of solar radiation. The state of Rio Grande do Norte (RN) has one of the highest levels of solar irradiation of the Brazilian territory, making it eligible to receive investments for the installation of photovoltaic solar plants. This thesis will present the state-of-the-art in solar photovoltaic power generation and will examine the potential for generation of solar photovoltaic power in Brazil and RN, based on solarimetrics measurements conducted by various institutions and also measurements performed in Natal, the state capital

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The use of solar energy for electricity generation has shown a growing interest in recent years. Generally, the conversion of solar energy into electricity is made by PV modules installed on fixed structures, with slope determined by the latitude of the installation site. In this sense, the use of mobile structures with solar tracking, has enabled increased production of the generated energy. However, the performance of these structures depends on the type of tracker and the position control used. In this work, it is proposed position control a strategy applied for a solar tracker, which will be installed in Laboratory of Power Electronics and Renewable Energy (LEPER), located in the Federal University of Rio Grande do Norte (UFRN). The tracker system is of polar type with daily positioning east-west and tilt angle manual adjustment in the seasonal periods, from north to south

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work purposes the application of a methodology to optimize the implantation cost of an wind-solar hybrid system for oil pumping. The developed model is estimated the implantation cost of system through Multiple Linear Regression technique, on the basis of the previous knowledge of variables: necessary capacity of storage, total daily energy demand, wind power, module power and module number. These variables are gotten by means of sizing. The considered model not only can be applied to the oil pumping, but also for any other purposes of electric energy generation for conversion of solar, wind or solar-wind energy, that demand short powers. Parametric statistical T-student tests had been used to detect the significant difference in the average of total cost to being considered the diameter of the wind, F by Snedecor in the variance analysis to test if the coefficients of the considered model are significantly different of zero and test not-parametric statistical by Friedman, toverify if there is difference in the system cost, by being considered the photovoltaic module powers. In decision of hypothesis tests was considered a 5%-significant level. The configurations module powers showed significant differences in total cost of investment by considering an electrical motor of 3 HP. The configurations module powers showed significant differences in total cost of investment by considering an electrical motor of 5 HP only to wind speed of 4m/s and 6 m/s in wind of 3 m, 4m and 5 m of diameter. There was not significant difference in costs to diameters of winds of 3 m and 4m. The mathematical model and the computational program may be used to others applications which require electrical between 2.250 W and 3.750 W. A computational program was developed to assist the study of several configurations that optimizes the implantation cost of an wind-solar system through considered mathematical model

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present work presents a contribution in the study of modelings of transference of heat for foods submitted to the experimental tests in the considered solar oven, where the best modeling for the beefburger of chicken in study was evaluated, comparing the results, considering this food as a half-infinite(1er object considered model) and,after that, considered the chicken beefburger as a plain plate in transient regimen in two distinct conditions: not considering and another model considering the contribution of the generation term, through the Criterion of Pomerantsev. The Sun, beyond life source, is the origin of all the energy forms that the man comes using during its history and can be the reply for the question of the energy supplying in the future, a time that learns to use to advantage in rational way the light that this star constantly special tax on our planet. Shining more than the 5 billion years, it is calculated that the Sun still in them will privilege for others 6 billion years, or either, it is only in the half of its existence and will launch on the Earth, only in this year, 4000 times more energy that we will consume. Front to this reality, would be irrational not to search, by all means technical possible, to use to advantage this clean, ecological and gratuitous power plant. In this dissertation evaluate the performance of solar cooker of the type box. Laboratory of Solar Energy of the Federal University of the Great River of North - UFRN was constructed by the group (LES) a model of solar stove of the type box and was tested its viability technique, considering modeling foods submitted when baking in the solar oven, the cooker has main characteristic the easiness of manufacture and assembly, the low cost (was used material accessible composition to the low income communities) and simplicity in the mechanism of movement of the archetype for incidence of the direct solar light. They had been proposals modeling for calculations of food the minimum baking time, considering the following models of transference of heat in the transient state: object the halfinfinite, plain plate and the model of the sphere to study the necessary temperature for the it bakes of bread (considering spherical geometry). After evaluate the models of transmission of heat will be foods submitted you the processes of to it bakes of, the times gotten for the modeling with the experimental times of it bakes in the solar oven had been compared, demonstrating the modeling that more good that it portraies the accuracies of the results of the model

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study were projected, built and tested an electric solar dryer consisting of a solar collector, a drying chamber, an exhaust fan and a fan to promote forced hot air convection. Banana drying experiments were also carried out in a static column dryer to model the drying and to obtain parameters that can be used as a first approximation in the modeling of an electric solar dryer, depending on the similarity of the experimental conditions between the two drying systems. From the banana drying experiments conducted in the static column dryer, we obtained food weight data as a function of aqueous concentration and temperature. Simplified mathematical models of the banana drying were made, based on Fick s and Fourier s second equations, which were tested with the experimental data. We determined and/or modeled parameters such as banana moisture content, density, thin layer drying curves, equilibrium moisture content, molecular diffusivity of the water in banana DAB, external mass transfer coefficient kM, specific heat Cp, thermal conductivity k, latent heat of water evaporation in the food Lfood, time to heat food, and minimum energy and power required to heat the food and evaporate the water. When we considered the shrinkage of radius R of a banana, the calculated values of DAB and kM generally better represent the phenomenon of water diffusion in a solid. The latent heat of water evaporation in the food Lfood calculated by modeling is higher than the latent heat of pure water evaporation Lwater. The values calculated for DAB and KM that best represent the drying were obtained with the analytical model of the present paper. These values had good agreement with those assessed with a numeric model described in the literature, in which convective boundary condition and food shrinkage are considered. Using parameters such as Cp, DAB, k, kM and Lfood, one can elaborate the preliminary dryer project and calculate the economy using only solar energy rather than using solar energy along with electrical energy