946 resultados para SPORT SCIENCES
Resumo:
Small groups of athletes (maximum size 8) were taught to voluntarily control their finger temperature, in a test of the feasibility of thermal biofeedback as a tool for coaches. The objective was to decrease precompetitive anxiety among the 140 young, competitive athletes (track and field, N=61; swimming, N=79), 66 females and 74 males, mean age 14.8 years, age range 8.9-20.5 years, from local high schools and swimming clubs. The biofeedback (visual and auditory) was provided by small, battery-powered devices that were connected to thermistors attached to the middle finger of the dominant hand. An easily readable digital LCD display, in 0.01 degrees C increments, provided visual feedback, while a musical tone, which descended in pitch with increased finger temperature, provided the audio component via small headphones. Eight twenty minute sessions were scheduled, with 48 hours between sessions. The measures employed in this prestest-posttest study were Levenson's locus of control scale (IPC), and the Competitive Sport Anxiety Inventory (CSAI-2). The results indicated that, while significant control of finger temperature was achieved, F(1, 160)=5.30, p
Resumo:
The purpose of this study was to compare the effects of exercise intensity and exercise-induced muscle damage on changes in anti-inflammatory cytokines and other inflammatory mediators. Nine well-trained male runners completed three different exercise trials on separate occasions: ( 1) level treadmill running at 60% VO2max (moderate-intensity trial) for 60 min; (2) level treadmill running at 85% VO2max (high-intensity trial) for 60 min; (3) downhill treadmill running ( - 10% gradient) at 60% VO2 max (downhill running trial) for 45 min. Blood was sampled before, immediately after and 1 h after exercise. Plasma was analyzed for interleukin-1 receptor antagonist (IL-1ra), IL-4, IL-5, IL-10, IL-12p40, IL-13, monocyte chemotactic protein-1 (MCP-1), prostaglandin E-2, leukotriene B-4 and heat shock protein 70 (HSP70). The plasma concentrations of IL-1ra, IL-12p40, MCP-1 and HSP70 increased significantly (P< 0.05) after all three trials. Plasma prostaglandin E-2 concentration increased significantly after the downhill running and high-intensity trials, while plasma IL-10 concentration increased significantly only after the high-intensity trial. IL-4 and leukotriene B4 did not increase significantly after exercise. Plasma IL-1ra and IL-10 concentrations were significantly higher ( P< 0.05) after the high-intensity trial than after both the moderate-intensity and downhill running trials. Therefore, following exercise up to 1 h duration, exercise intensity appears to have a greater effect on anti-inflammatory cytokine production than exercise-induced muscle damage.
Resumo:
The coach is central to the development of expertise in sport (Bloom, 1985) and is subsequently key to facilitating adaptive forms of motivation to enhance the quality of sport performance (Mallett & Hanrahan, 2004). In designing optimal training environments that are sensitive to the underlying motives of athletes, the coach requires an in-depth understanding of motivation. This paper reports on the application of self-determination theory (SDT; Deci & Ryan, 1985; Ryan & Deci, 2000) to coaching elite athletes. Specifically, the application of SDT to designing an autonomy-supportive motivational climate is outlined, which was used in preparing Australia's two men's relay teams for the 2004 Olympic Games in Athens.
Resumo:
This paper presents empirical evidence suggesting that healthy humans can perform a two degree of freedom visuo-motor pursuit tracking task with the same response time delay as a one degree of freedom task. In contrast, the time delay of the response is influenced markedly by the nature of the motor synergy required to produce it. We suggest a conceptual account of this evidence based on adaptive model theory, which combines theories of intermittency from psychology and adaptive optimal control from engineering. The intermittent response planning stage has a fixed period. It possesses multiple optimal trajectory generators such that multiple degrees of freedom can be planned concurrently, without requiring an increase in the planning period. In tasks which require unfamiliar motor synergies, or are deemed to be incompatible, internal adaptive models representing movement dynamics are inaccurate. This means that the actual response which is produced will deviate from the one which is planned. For a given target-response discrepancy, corrective response trajectories of longer duration are planned, consistent with the principle of speed-accuracy trade-off. Compared to familiar or compatible tasks, this results in a longer response time delay and reduced accuracy. From the standpoint of the intermittency approach, the findings of this study help make possible a more integral and predictive account of purposive action. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
High-intensity exercise leads to reductions in muscle substrates (ATP, PCr, and glycogen) and a subsequent accumulation of metabolites (ADP, Pi, H+, and M2+) with a possible increase in free radical production. These factors independently and collectively have deleterious effects on muscle, with significant repercussions on high-intensity performance or training sessions. The effect of carnosine on overcoming muscle fatigue appears to be related to its ability to buffer the increased H+ concentration following high-intensity work. Carnosine, however, has other roles such as an antioxidant, a metal chelator, a Ca2+ and enzyme regulator, an inhibitor of protein glycosylation and protein-protein cross-linking. To date, only 1 study has investigated the effects of carnosine supplementation (not in pure form) on exercise performance in human subjects and found no improvement in repetitive high-intensity work. Much data has come from in vitro work on animal skeletal muscle fibers or other components of muscle contractile mechanisms. Thus further research needs to be carried out on humans to provide additional understanding on the effects of carnosine in vivo.
Resumo:
Passive tilting increases ventilation in healthy subjects; however, controversy surrounds the proposed mechanism. This study is aimed to evaluate the possible mechanism for changes to ventilation following passive head-up tilt (HUT) and active standing by comparison of a range of ventilatory, metabolic and mechanical parameters. Ventilatory parameters (V (T), V (E), V (E)/VO2, V (E)/VCO2, f and PetCO(2)), functional residual capacity (FRC), respiratory mechanics with impulse oscillometry; oxygen consumption (VO2) and carbon dioxide production (VCO2) were measured in 20 healthy male subjects whilst supine, following HUT to 70 degrees and unsupported standing. Data were analysed using a linear mixed model. HUT to 70 degrees from supine increased minute ventilation (V (E)) (P < 0.001), tidal volume (V (T)) (P=0.001), ventilatory equivalent for O-2 (V (E)/VO2) (P=0.020) and the ventilatory equivalent for CO2 (V (E)/VCO2) (P < 0.001) with no change in f (P=0.488). HUT also increased FRC (P < 0.001) and respiratory system reactance (X5Hz) (P < 0.001) with reduced respiratory system resistance (R5Hz) (P=0.004) and end-tidal carbon dioxide (PetCO(2)) (P < 0.001) compared to supine. Standing increased V (E) (P < 0.001), V (T) (P < 0.001) and V (E)/VCO2 (P=0.020) with no change in respiratory rate (f) (P=0.065), V (E)/VO2 (P=0.543). Similar changes in FRC (P < 0.001), R5Hz (P=0.013), X5Hz (P < 0.001) and PetCO(2) (P < 0.001) compared to HUT were found. In contrast to HUT, standing increased VO2 (P=0.002) and VCO2 (P=0.048). The greater increase in V (E) in standing compared to HUT appears to be related to increased VO2 and VCO2 associated with increased muscle activity in the unsupported standing position. This has implications for exercise prescription and rehabilitation of critically ill patients who have reduced cardiovascular and respiratory reserve.
Resumo:
Based on the observation that bimanual finger tapping movements tend toward mirror symmetry with respect to the body midline, despite the synchronous activation of non-homologous muscles, F. Mechsner, D. Kerzel, G. Knoblich, and W. Prinz (2001) [Perceptual basis of bimanual coordination. Nature, 414, 69-73] suggested that the basis of rhythmic coordination is purely spatial/perceptual in nature, and independent of the neuro-anatomical constraints of the motor system. To investigate this issue further, we employed a four finger tapping task similar to that used by F. Mechsner and G. Knoblich (2004) [Do muscle matter in bimanual coordination? Journal of Experimental Psychology: Human Perception and Performance, 30, 490-503] in which six male participants were required to alternately tap combinations of adjacent pairs of index (1), middle (M) and ring (R) fingers of each hand in time with an auditory metronome. The metronome pace increased continuously from 1 Hz to 3 Hz over the course of a 30-s trial. Each participant performed three blocks of trials in which finger combination for each hand (IM or MR) and mode of coordination (mirror or parallel) were presented in random order. Within each block, the right hand was placed in one of three orientations; prone, neutral and supine. The order of blocks was counterbalanced across the six participants. The left hand maintained a prone position throughout the experiment. On the basis of discrete relative phase analyses between synchronised taps, the time at which the initial mode of coordination was lost was determined for each trial. When the right hand was prone, transitions occurred only from parallel symmetry to mirror symmetry, regardless of finger combination. In contrast, when the right hand was supine, transitions occurred only from mirror symmetry to parallel but no transitions were observed in the opposite direction. In the right hand neutral condition, mirror and parallel symmetry are insufficient to describe the modes of coordination since the hands are oriented orthogonally. When defined anatomically, however, the results in each of the three right hand orientations are consistent. That is, synchronisation of finger tapping is deter-mined by a hierarchy of control of individual fingers based on their intrinsic neuro-mechanical properties rather than on the basis of their spatial orientation. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
This study examined the feasibility and effectiveness for increasing physical activity of a print-based intervention, and a print- plus telephone-mediated intervention among mid-life and older Australian adults. A randomised controlled trial study design was used. In mid-2002, 66 adults (18 men, 48 women) aged 45-78 years, who identified themselves as under-active, were recruited through advertisements and word-of-mouth at two sites (Melbourne and Brisbane), and randomised to either the print or print-plus-telephone mediated intervention group. Participants in both groups attended an initial briefing session, and over the 12-week intervention period received an instructional newsletter and use of a pedometer (both groups), and individualised telephone calls (print- plus-telephone group only). Self-reported physical activity data were collected at baseline, 12 and 16 weeks. Measures of self-reported global physical activity, moderate-vigorous intensity activity and walking all showed increases between baseline and 12 weeks for both intervention groups. These increases were generally maintained by 16 weeks, although participants in the print-plus-telephone group maintained slightly higher levels of global reported activity and walking (by approximately 30 mins/wk) than those in the print group. These interventions show potential for promoting initial increases in physical activity among mid-life and older Australian adults, and should be evaluated across more extended time periods.
Resumo:
Resistance training has been shown to reliably and substantially enhance muscle function in older adults and these improvements can be accompanied by improved functional performance. Training variables should be manipulated to enhance muscle strength and minimize injury risks in this population.
Resumo:
The way people with chronic low back pain think about pain can affect the way they move. This case report concerns a patient with chronic disabling low back pain who underwent functional magnetic resonance imaging scans during performance of a voluntary trunk muscle task under three conditions: directly after training in the task and, after one week of practice, before and after a 2.5 hour pain physiology education session. Before education there was widespread brain activity during performance of the task, including activity in cortical regions known to be involved in pain, although the task was not painful. After education widespread activity was absent so that there was no brain activation outside of the primary somatosensory cortex. The results suggest that pain physiology education markedly altered brain activity during performance of the task. The data offer a possible mechanism for difficulty in acquisition of trunk muscle training in people with pain and suggest that the change in activity associated with education may reflect reduced threat value of the task.
Resumo:
The abdominal muscles have an important role in control and movement of the lumbar spine and pelvis. Given there is new evidence of morphological and functional differences between distinct anatomical regions of the abdominal muscles, this study investigated whether there are regional differences in postural activity of these muscles and whether recruitment varies between different body positions. Eleven subjects with no history of low back pain that affected function or for which they sought treatment participated in the study. Electromyographic (EMG) activity of the upper, middle and lower regions of transversus abdominis (TrA), the middle and lower regions of obliquus internus abdominis (OI) and the middle region of obliquus externus abdominis (OE) was recorded using intramuscular electrodes. All subjects performed rapid, unilateral shoulder flexion in standing and six subjects also moved their upper limb in sitting. There were regional differences in the postural responses of TrA with limb movement. Notably, the onset of EMG of the upper region was later than that of the lower and middle regions. There were no differences in the EMG onsets of lower and middle TrA or OI. The postural responses of the abdominal muscles were also found to differ between body positions, with recruitment delayed in sitting compared to standing. This study showed that there is regional differentiation in TrA activity with challenges to postural control and that body position influences the postural responses of the abdominal muscles. These results may reflect variation in the contribution of abdominal muscle regions to stability of the trunk. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
Participation in leisure-time activities, self-concept perceptions and individual dispositional goal orientations were examined as mediators of relationships between physical coordination and self-evaluations of life satisfaction and general self-concept for 173 boys aged 10-13 years. Participants completed seven-day activity diaries and 12-month retrospective recall questionnaires recording participation in leisure-time activities. Self-report measures of self-concept, global life satisfaction and dispositional goal orientations were also completed. Results showed that boys with moderate to severe physical coordination difficulties had significantly lower self-concept perceptions of physical ability and appearance, peer and parent relations and general self-concept, as well as lower life satisfaction than boys with medium to high levels of physical coordination. The relationships between boys' physical coordination and their self-perceptions of life satisfaction and general self-concept were significantly influenced by individual self-concept appraisals of physical ability and appearance, peer and parent relations. Adopting task-oriented goals was found to positively change the relationship between physical coordination and both general self-concept and life satisfaction. Team sport participation positively mediated the relationship between physical coordination and life satisfaction. The potential for team sport participation and adoption of task-oriented goals to influence life satisfaction for boys with differing levels of physical coordination was discussed. (c) 2006 Elsevier B.V.. All rights reserved.
Resumo:
In this study, we examined patterns of leg muscle recruitment and co-activation, and the relationship between muscle recruitment and cadence, in highly trained cyclists. Electromyographic (EMG) activity of the tibialis anterior, tibialis posterior, peroneus longus, gastrocnemius lateralis and soleus was recorded using intramuscular electrodes, at individual preferred cadence, 57.5, 77.5 and 92.5 rev.min(-1). The influence of electrode type and location on recorded EMG was also investigated using surface and dual intramuscular recordings. Muscle recruitment patterns varied from those previously reported, but there was little variation in muscle recruitment between these highly trained cyclists. The tibialis posterior, peroneus longus and soleus were recruited in a single, short burst of activity during the downstroke. The tibialis anterior and gastrocnemius lateralis were recruited in a biphasic and alternating manner. Contrary to existing hypotheses, our results indicate little co-activation between the tibialis posterior and peroneus longus. Peak EMG amplitude increased linearly with cadence and did not decrease at individual preferred cadence. There was little variation in patterns of muscle recruitment or co-activation with changes in cadence. Intramuscular electrode location had little influence on recorded EMG. There were significant differences between surface and intramuscular recordings from the tibialis anterior and gastrocnemius lateralis, which may explain differences between our findings and those of previous studies.