869 resultados para Risk model
Resumo:
Asset correlations are of critical importance in quantifying portfolio credit risk and economic capitalin financial institutions. Estimation of asset correlation with rating transition data has focusedon the point estimation of the correlation without giving any consideration to the uncertaintyaround these point estimates. In this article we use Bayesian methods to estimate a dynamicfactor model for default risk using rating data (McNeil et al., 2005; McNeil and Wendin, 2007).Bayesian methods allow us to formally incorporate human judgement in the estimation of assetcorrelation, through the prior distribution and fully characterize a confidence set for the correlations.Results indicate: i) a two factor model rather than the one factor model, as proposed bythe Basel II framework, better represents the historical default data. ii) importance of unobservedfactors in this type of models is reinforced and point out that the levels of the implied asset correlationscritically depend on the latent state variable used to capture the dynamics of default,as well as other assumptions on the statistical model. iii) the posterior distributions of the assetcorrelations show that the Basel recommended bounds, for this parameter, undermine the levelof systemic risk.
Resumo:
Attitudes toward risk influence the decision to diversify among uncertain options. Yet, because in most situations the options are ambiguous, attitudes toward ambiguity may also play an important role. I conduct a laboratory experiment to investigate the effect of ambiguity on the decision to diversify. I find that diversification is more prevalent and more persistent under ambiguity than under risk. Moreover, excess diversification under ambiguity is driven by participants who stick with a status quo gamble when diversification among gambles is not feasible. This behavioral pattern cannot be accommodated by major theories of choice under ambiguity.
Resumo:
Many common bird species have declined as a result of agricultural intensification and this could be mitigated by organic farming. We paired sites for habitat and geographical location on organic and nonorganic farms in Ontario, Canada to test a priori predictions of effects on birds overall, 9 guilds and 22 species in relation to candidate models for farming practices (13 variables), local habitat features (12 variables), or habitat features that influence susceptibility to predation. We found that: (1) Overall bird abundance, but not richness, was significantly (p < 0.05) higher on organic sites (mean 43.1 individuals per site) than nonorganic sites (35.8 individuals per site). Significantly more species of birds were observed for five guilds, including primary grassland birds, on organic vs. nonorganic sites. No guild had higher richness or abundance on nonorganic farms; (2) Farming practice models were the best (ΔAIC < 4) for abundance of birds overall, primary grassland bird richness, sallier aerial insectivore richness and abundance, and abundance of ground nesters; (3) Habitat models were the best for overall richness, Neotropical migrant abundance, richness and abundance of Ontario-USA-Mexico (short-distance) migrants and resident richness; (4) Predation models were the best for richness of secondary grassland birds and ground feeders; (5) A combination of variables from the model types were best for richness or abundance overall, 13 of 18 guilds (richness and abundance) and 16 of 22 species analyzed. Five of 10 farming practice variables (including herbicide use, organic farm type) and 9 of 13 habitat variables (including hedgerow length, proportion of hay) were significant in best models. Risk modeling indicated that herbicide use could decrease primary grassland birds by one species (35% decline from 3.4 to 2.3 species) per site. Organic farming could benefit species of conservation concern by 49% (an increase from 7.6 to 11.4 grassland birds). An addition of 63 m of hedgerow could increase abundance and richness of short distance migrants by 50% (3.0 to 4.8 and 1.3 to 2.0, respectively). Increasing the proportion of hay on nonorganic farms to 50% could increase abundance of primary grassland bird by 40% (6.7 to 9.4). Our results provide support for alternative farmland designs and agricultural management systems that could enhance select bird species in farmland.
Resumo:
The Streaked Horned Lark (Eremophila alpestris strigata) is listed as endangered by the State of Washington, USA and by Canada under the Species at Risk Act and is also classified as a federal candidate for listing under the Endangered Species Act in the USA. A substantial portion of Streaked Horned Lark habitat has been lost or degraded, and range contraction has occurred in Oregon, Washington, and British Columbia. We estimate the vital rates (fecundity, adult and juvenile survival) and population growth rate (λ) for Streaked Horned Larks breeding in Washington, USA and conduct a Life-Stage Simulation Analysis (LSA) to evaluate which vital rate has the greatest influence on λ. We simulated changes in the three vital rates to examine how much they would need to be adjusted either independently or in concert to achieve a stable Streaked Horned Lark population (λ = 1). We also evaluated which fecundity component (the number of fledglings per egg laid or renesting interval) had the greatest impact on λ. The estimate of population growth suggests that Streaked Horned Larks in Washington are declining rapidly (λ = 0.62 ± 0.10) and that local breeding sites are not sustainable without immigration. The LSA results indicate that adult survival had the greatest influence on λ, followed by juvenile survival and fecundity. However, increases in vital rates led to λ = 1 only when adult survival was raised from 0.47 to 0.85, juvenile survival from 0.17 to 0.58, and fecundity from 0.91 to 3.09. Increases in breeding success and decreases in the renesting interval influenced λ similarly; however, λ did not reach 1 even when breeding success was raised to 100% or renesting intervals were reduced to 1 day. Only when all three vital rates were increased simultaneously did λ approach 1 without requiring highly unrealistic increases in each vital rate. We conclude that conservation activities need to target all or multiple vital rates to be successful. The baseline data presented here and subsequent efforts to manage Streaked Horned Larks will provide valuable information for management of other declining Horned Lark subspecies and other grassland songbirds across North America.
Resumo:
Despite the many models developed for phosphorus concentration prediction at differing spatial and temporal scales, there has been little effort to quantify uncertainty in their predictions. Model prediction uncertainty quantification is desirable, for informed decision-making in river-systems management. An uncertainty analysis of the process-based model, integrated catchment model of phosphorus (INCA-P), within the generalised likelihood uncertainty estimation (GLUE) framework is presented. The framework is applied to the Lugg catchment (1,077 km2), a River Wye tributary, on the England–Wales border. Daily discharge and monthly phosphorus (total reactive and total), for a limited number of reaches, are used to initially assess uncertainty and sensitivity of 44 model parameters, identified as being most important for discharge and phosphorus predictions. This study demonstrates that parameter homogeneity assumptions (spatial heterogeneity is treated as land use type fractional areas) can achieve higher model fits, than a previous expertly calibrated parameter set. The model is capable of reproducing the hydrology, but a threshold Nash-Sutcliffe co-efficient of determination (E or R 2) of 0.3 is not achieved when simulating observed total phosphorus (TP) data in the upland reaches or total reactive phosphorus (TRP) in any reach. Despite this, the model reproduces the general dynamics of TP and TRP, in point source dominated lower reaches. This paper discusses why this application of INCA-P fails to find any parameter sets, which simultaneously describe all observed data acceptably. The discussion focuses on uncertainty of readily available input data, and whether such process-based models should be used when there isn’t sufficient data to support the many parameters.
Resumo:
A wide variety of exposure models are currently employed for health risk assessments. Individual models have been developed to meet the chemical exposure assessment needs of Government, industry and academia. These existing exposure models can be broadly categorised according to the following types of exposure source: environmental, dietary, consumer product, occupational, and aggregate and cumulative. Aggregate exposure models consider multiple exposure pathways, while cumulative models consider multiple chemicals. In this paper each of these basic types of exposure model are briefly described, along with any inherent strengths or weaknesses, with the UK as a case study. Examples are given of specific exposure models that are currently used, or that have the potential for future use, and key differences in modelling approaches adopted are discussed. The use of exposure models is currently fragmentary in nature. Specific organisations with exposure assessment responsibilities tend to use a limited range of models. The modelling techniques adopted in current exposure models have evolved along distinct lines for the various types of source. In fact different organisations may be using different models for very similar exposure assessment situations. This lack of consistency between exposure modelling practices can make understanding the exposure assessment process more complex, can lead to inconsistency between organisations in how critical modelling issues are addressed (e.g. variability and uncertainty), and has the potential to communicate mixed messages to the general public. Further work should be conducted to integrate the various approaches and models, where possible and regulatory remits allow, to get a coherent and consistent exposure modelling process. We recommend the development of an overall framework for exposure and risk assessment with common approaches and methodology, a screening tool for exposure assessment, collection of better input data, probabilistic modelling, validation of model input and output and a closer working relationship between scientists and policy makers and staff from different Government departments. A much increased effort is required is required in the UK to address these issues. The result will be a more robust, transparent, valid and more comparable exposure and risk assessment process. (C) 2006 Elsevier Ltd. All rights reserved.
Resumo:
A semi-distributed model, INCA, has been developed to determine the fate and distribution of nutrients in terrestrial and aquatic systems. The model simulates nitrogen and phosphorus processes in soils, groundwaters and river systems and can be applied in a semi-distributed manner at a range of scales. In this study, the model has been applied at field to sub-catchment to whole catchment scale to evaluate the behaviour of biosolid-derived losses of P in agricultural systems. It is shown that process-based models such as INCA, applied at a wide range of scales, reproduce field and catchment behaviour satisfactorily. The INCA model can also be used to generate generic information for risk assessment. By adjusting three key variables: biosolid application rates, the hydrological connectivity of the catchment and the initial P-status of the soils within the model, a matrix of P loss rates can be generated to evaluate the behaviour of the model and, hence, of the catchment system. The results, which indicate the sensitivity of the catchment to flow paths, to application rates and to initial soil conditions, have been incorporated into a Nutrient Export Risk Matrix (NERM).
Resumo:
Formal and analytical risk models prescribe how risk should be incorporated in construction bids. However, the actual process of how contractors and their clients negotiate and agree on price is complex, and not clearly articulated in the literature. Using participant observation, the entire tender process was shadowed in two leading UK construction firms. This was compared to propositions in analytical models and significant differences were found. 670 hours of work observed in both firms revealed three stages of the bidding process. Bidding activities were categorized and their extent estimated as deskwork (32%), calculations (19%), meetings (14%), documents (13%), off-days (11%), conversations (7%), correspondence (3%) and travel (1%). Risk allowances of 1-2% were priced in some bids and three tiers of risk apportionment in bids were identified. However, priced risks may sometimes be excluded from the final bidding price to enhance competitiveness. Thus, although risk apportionment affects a contractor’s pricing strategy, other complex, microeconomic factors also affect price. Instead of pricing in contingencies, risk was priced mostly through contractual rather than price mechanisms, to reflect commercial imperatives. The findings explain why some assumptions underpinning analytical models may not be sustainable in practice and why what actually happens in practice is important for those who seek to model the pricing of construction bids.
Resumo:
Periods between predator detection and an escape response (escape delays) by prey upon attack by a predator often arise because animals trade-off the benefits such a delay gives for assessing risk accurately with the costs of not escaping as quickly as possible. We tested whether freezing behaviour (complete immobility in a previously foraging bird) observed in chaffinches before escaping from an approaching potential threat functions as a period of risk-assessment, and whether information on predator identity is gained even when time available is very short. We flew either a model of a sparrowhawk (predator) or a woodpigeon (no threat) at single chaffinches. Escape delays were significantly shorter with the hawk, except when a model first appeared close to the chaffinch. Chaffinches were significantly more vigilant when they resumed feeding after exposure to the sparrowhawk compared to the woodpigeon showing that they were able to distinguish between threats, and this applied even when time available for assessment was short (an average of 0.29 s). Our results show freezing in chaffinches functions as an effective economic risk assessment period, and that threat information is gained even when very short periods of time are available during an attack.
Resumo:
The farm-level success of Bt-cotton in developing countries is well documented. However, the literature has only recently begun to recognise the importance of accounting for the effects of the technology on production risk, in addition to the mean effect estimated by previous studies. The risk effects of the technology are likely very important to smallholder farmers in the developing world due to their risk-aversion. We advance the emergent literature on Bt-cotton and production risk by using panel data methods to control for possible endogeneity of Bt-adoption. We estimate two models, the first a fixed-effects version of the Just and Pope model with additive individual and time effects, and the second a variation of the model in which inputs and variety choice are allowed to affect the variance of the time effect and its correlation with the idiosyncratic error. The models are applied to panel data on smallholder cotton production in India and South Africa. Our results suggest a risk-reducing effect of Bt-cotton in India, but an inconclusive picture in South Africa.
Resumo:
This study suggests a statistical strategy for explaining how food purchasing intentions are influenced by different levels of risk perception and trust in food safety information. The modelling process is based on Ajzen's Theory of Planned Behaviour and includes trust and risk perception as additional explanatory factors. Interaction and endogeneity across these determinants is explored through a system of simultaneous equations, while the SPARTA equation is estimated through an ordered probit model. Furthermore, parameters are allowed to vary as a function of socio-demographic variables. The application explores chicken purchasing intentions both in a standard situation and conditional to an hypothetical salmonella scare. Data were collected through a nationally representative UK wide survey of 533 UK respondents in face-to-face, in-home interviews. Empirical findings show that interactions exist among the determinants of planned behaviour and socio-demographic variables improve the model's performance. Attitudes emerge as the key determinant of intention to purchase chicken, while trust in food safety information provided by media reduces the likelihood to purchase. (C) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Few studies have linked density dependence of parasitism and the tritrophic environment within which a parasitoid forages. In the non-crop plant-aphid, Centaurea nigra-Uroleucon jaceae system, mixed patterns of density-dependent parasitism by the parasitoids Aphidius funebris and Trioxys centaureae were observed in a survey of a natural population. Breakdown of density-dependent parasitism revealed that density dependence was inverse in smaller colonies but direct in large colonies (>20 aphids), suggesting there is a threshold effect in parasitoid response to aphid density. The CV2 of searching parasitoids was estimated from parasitism data using a hierarchical generalized linear model, and CV2>1 for A. funebris between plant patches, while for T. centaureae CV2>1 within plant patches. In both cases, density independent heterogeneity was more important than density-dependent heterogeneity in parasitism. Parasitism by T. centaureae increased with increasing plant patch size. Manipulation of aphid colony size and plant patch size revealed that parasitism by A. funebris was directly density dependent at the range of colony sizes tested (50-200 initial aphids), and had a strong positive relationship with plant patch size. The effects of plant patch size detected for both species indicate that the tritrophic environment provides a source of host density independent heterogeneity in parasitism, and can modify density-dependent responses. (c) 2007 Gessellschaft fur Okologie. Published by Elsevier GmbH. All rights reserved.
Resumo:
The article investigates how purchasing intentions among a sample of Italian consumers are influenced by different levels of risk perception and their trust in food-safety information provided by different sources such as the food industry, government agencies, or consumers' associations. The assessment of the determinants of intention to purchase was carried out by estimating a causal model for the chicken case in which attitudes, subjective norms, and perceived risk play a major role in determining buyer's behavior. In particular, the role of trust in influencing risk perception is highlighted either as a general construct or as specific constructs targeting food chain, policy actors, and the media. [EconLit citations: Q130, Q190, D120]. (C) 2008 Wiley Periodicals, Inc.
Resumo:
A method was developed to evaluate crop disease predictive models for their economic and environmental benefits. Benefits were quantified as the value of a prediction measured by costs saved and fungicide dose saved. The value of prediction was defined as the net gain made by using predictions, measured as the difference between a scenario where predictions are available and used and a scenario without prediction. Comparable 'with' and 'without' scenarios were created with the use of risk levels. These risk levels were derived from a probability distribution fitted to observed disease severities. These distributions were used to calculate the probability that a certain disease induced economic loss was incurred. The method was exemplified by using it to evaluate a model developed for Mycosphaerella graminicola risk prediction. Based on the value of prediction, the tested model may have economic and environmental benefits to growers if used to guide treatment decisions on resistant cultivars. It is shown that the value of prediction measured by fungicide dose saved and costs saved is constant with the risk level. The model could also be used to evaluate similar crop disease predictive models.
Resumo:
We developed a stochastic simulation model incorporating most processes likely to be important in the spread of Phytophthora ramorum and similar diseases across the British landscape (covering Rhododendron ponticum in woodland and nurseries, and Vaccinium myrtillus in heathland). The simulation allows for movements of diseased plants within a realistically modelled trade network and long-distance natural dispersal. A series of simulation experiments were run with the model, representing an experiment varying the epidemic pressure and linkage between natural vegetation and horticultural trade, with or without disease spread in commercial trade, and with or without inspections-with-eradication, to give a 2 x 2 x 2 x 2 factorial started at 10 arbitrary locations spread across England. Fifty replicate simulations were made at each set of parameter values. Individual epidemics varied dramatically in size due to stochastic effects throughout the model. Across a range of epidemic pressures, the size of the epidemic was 5-13 times larger when commercial movement of plants was included. A key unknown factor in the system is the area of susceptible habitat outside the nursery system. Inspections, with a probability of detection and efficiency of infected-plant removal of 80% and made at 90-day intervals, reduced the size of epidemics by about 60% across the three sectors with a density of 1% susceptible plants in broadleaf woodland and heathland. Reducing this density to 0.1% largely isolated the trade network, so that inspections reduced the final epidemic size by over 90%, and most epidemics ended without escape into nature. Even in this case, however, major wild epidemics developed in a few percent of cases. Provided the number of new introductions remains low, the current inspection policy will control most epidemics. However, as the rate of introduction increases, it can overwhelm any reasonable inspection regime, largely due to spread prior to detection. (C) 2009 Elsevier B.V. All rights reserved.