956 resultados para Rhombohedral symmetry
Resumo:
A simple holographic model is presented and analyzed that describes chiral symmetry breaking and the physics of the meson sector in QCD. This is a bottom-up model that incorporates string theory ingredients like tachyon condensation which is expected to be the main manifestation of chiral symmetry breaking in the holographic context. As a model for glue the Kuperstein-Sonnenschein background is used. The structure of the flavor vacuum is analyzed in the quenched approximation. Chiral symmetry breaking is shown at zero temperature. Above the deconfinement transition chiral symmetry is restored. A complete holographic renormalization is performed and the chiral condensate is calculated for different quark masses both at zero and non-zero temperatures. The 0++, 0¿+, 1++, 1¿¿ meson trajectories are analyzed and their masses and decay constants are computed. The asymptotic trajectories are linear. The model has one phenomenological parameter beyond those of QCD that affects the 1++, 0¿+ sectors. Fitting this parameter we obtain very good agreement with data. The model improves in several ways the popular hard-wall and soft wall bottom-up models.
Resumo:
The RuvB protein is induced in Escherichia coli as part of the SOS response to DNA damage. It is required for genetic recombination and the postreplication repair of DNA. In vitro, the RuvB protein promotes the branch migration of Holliday junctions and has a DNA helicase activity in reactions that require ATP hydrolysis. We have used electron microscopy, image analysis, and three-dimensional reconstruction to show that the RuvB protein, in the presence of ATP, forms a dodecamer on double-stranded DNA in which two stacked hexameric rings encircle the DNA and are oriented in opposite directions with D6 symmetry. Although helicases are ubiquitous and essential for many aspects of DNA repair, replication, and transcription, three-dimensional reconstruction of a helicase has not yet been reported, to our knowledge. The structural arrangement that is seen may be common to other helicases, such as the simian virus 40 large tumor antigen.
Resumo:
In the liver of oviparous vertebrates vitellogenin gene expression is controlled by estrogen. The nucleotide sequence of the 5' flanking region of the Xenopus laevis vitellogenin genes A1, A2, B1 and B2 has been determined. These sequences have been compared to each other and to the equivalent region of the chicken vitellogenin II and apo-VLDLII genes which are also expressed in the liver in response to estrogen. The homology between the 5' flanking region of the Xenopus genes B1 and B2 is higher than between the corresponding regions of the other closely related genes A1 and A2. Four short blocks of sequence homology which are present at equivalent positions in the vitellogenin genes of both Xenopus laevis and chicken are characterized. A short sequence with two-fold rotational symmetry (GGTCANNNTGACC) was found at similar positions upstream of the five vitellogenin genes and is also present in two copies close to the 5' end of the chicken apo-VLDLII gene. The possible functional significance of this sequence, common to liver estrogen-responsive genes, is discussed.
Resumo:
Monalysin was recently described as a novel pore-forming toxin (PFT) secreted by the Drosophila pathogen Pseudomonas entomophila. Recombinant monalysin is multimeric in solution, whereas PFTs are supposed to be monomeric until target membrane association. Monalysin crystals were obtained by the hanging-drop vapour-diffusion method using PEG 8000 as precipitant. Preliminary X-ray diffraction analysis revealed that monalysin crystals belonged to the monoclinic space group C2, with unit-cell parameters a = 162.4, b = 146.2, c = 144.4 Å, β = 122.8°, and diffracted to 2.85 Å resolution using synchrotron radiation. Patterson self-rotation analysis and Matthews coefficient calculation indicate that the asymmetric unit contains nine copies of monalysin. Heavy-atom derivative data were collected and a Ta6Br14 cluster derivative data set confirmed the presence of ninefold noncrystallographic symmetry.
Resumo:
We study the electric dipole polarizability α D in 208 Pb based on the predictions of a large and representative set of relativistic and nonrelativistic nuclear mean-field models. We adopt the droplet model as a guide to better understand the correlations between α D and other isovector observables. Insights from the droplet model suggest that the product of α D and the nuclear symmetry energy at saturation density J is much better correlated with the neutron skin thickness r np of 208 Pb than the polarizability alone. Correlations of α D J with r np and with the symmetry energy slope parameter L suggest that α D J is a strong isovector indicator. Hence, we explore the possibility of constraining the isovector sector of the nuclear energy density functional by comparing our theoretical predictions against measurements of both α D and the parity-violating asymmetry in 208 Pb. We find that the recent experimental determination of α D in 208 Pb in combination with the range for the symmetry energy at saturation density J = [31 ± (2) est] MeV suggests r np (208 Pb) = 0 . 165 ± (0 . 009) expt ± (0 . 013) theor ± (0.021) est fm and L = 43 ± (6) expt ± (8) theor ± (12) est MeV
Resumo:
In clinical settings, functional evaluation of shoulder movement is primarily based on what the patient thinks he/she is able to do rather than what he/she is actually performing. We proposed a new approach for shoulder assessment based on inertial sensors to monitor arm movement in the daily routine. The detection of movement of the humerus relative to the trunk was first validated in a laboratory setting (sensitivity>95%, specificity>97%). Then, 41 control subjects and 21 patients suffering from a rotator cuff tear were evaluated (before and after surgery) using clinical questionnaires and a one-day measurement of arm movement. The quantity of movement was estimated with the movement frequency and its symmetry index (SIFr). The quality of movement was assessed using the Kolmogorov-Smirnov distance (KS) between the cumulative distribution of the arm velocity for controls and the same distribution for each patient. SIFr presented differences between patients and controls at 3 month follow-up (p<0.05) while KS showed differences also after 6 months (p<0.01). SIFr illustrated a change in dominance due to the disorder whereas KS, which appeared independent of the dominance and occupation, showed a change in movement velocity. Both parameters were correlated to clinical scores (R(2) reaching 0.5). This approach provides clinicians with new objective parameters for evaluating the functional ability of the shoulder in daily conditions, which could be useful for outcome assessment after surgery.
Resumo:
This paper examines statistical analysis of social reciprocity, that is, the balance between addressing and receiving behaviour in social interactions. Specifically, it focuses on the measurement of social reciprocity by means of directionality and skew-symmetry statistics at different levels. Two statistics have been used as overall measures of social reciprocity at group level: the directional consistency and the skew-symmetry statistics. Furthermore, the skew-symmetry statistic allows social researchers to obtain complementary information at dyadic and individual levels. However, having computed these measures, social researchers may be interested in testing statistical hypotheses regarding social reciprocity. For this reason, it has been developed a statistical procedure, based on Monte Carlo sampling, in order to allow social researchers to describe groups and make statistical decisions.
Resumo:
In the presence of 2-hydroxybiphenyl, the enhancer binding protein, HbpR, activates the sigma54-dependent P(hbpC) promoter and controls the initial steps of 2-hydroxybiphenyl degradation in Pseudomonas azelaica. In the activation process, an oligomeric HbpR complex of unknown subunit composition binds to an operator region containing two imperfect palindromic sequences. Here, the HbpR-DNA binding interactions were investigated by site-directed mutagenesis of the operator region and by DNA-binding assays using purified HbpR. Mutations that disrupted the twofold symmetry in the palindromes did not affect the binding affinity of HbpR, but various mutations along a 60 bp region, and also outside the direct palindromic sequences, decreased the binding affinity. Footprints of HbpR on mutant operator fragments showed that a partial loss of binding contacts occurs, suggesting that the binding of one HbpR 'protomer' in the oligomeric complex is impaired whilst leaving the other contacts intact. An HbpR variant, devoid of its N-terminal sensing A-domain, was unable to activate transcription from the hbpC promoter while maintaining protection of the operator DNA in footprints. Wild-type HbpR was unable to activate transcription from the hbpC promoter when delta A-HbpR was expressed in the same cell, suggesting the formation of (repressing) hetero-oligomers. This model implies that HbpR can self-associate on its operator DNA without effector recognition or ATP binding. Furthermore, our findings suggest that the N-terminal sensing domain of HbpR is needed to activate the central ATPase domain rather than to repress a constitutively active C domain, as is the case for the related regulatory protein XylR.
Resumo:
La simetria entre espatlles i l’alçada de les dues crestes ilíaques es perd quan es pateix escoliosi. Aquest empitjorament de la bona postura té conseqüències negatives per a la salut, especialment en el sistema musculoesquelètic. L’objecte principal d’aquest treball és avaluar l’impacte d’un programa d’activitat física basat en la combinació dels mètodes “Klapp” i l’“Stretching Global Actiu” sobre la postura en bipedestació de persones adultes que pateixen escoliosi idiopàtica. L’aplicació d’ambdós mètodes de forma individual no obtenen millores en aquests paràmetres en persones adultes, però en canvi en nens i nenes sí. El treball és un estudi experimental en el qual es va assignar un subjecte al grup intervenció i un subjecte al grup control. El subjecte del grup intervenció va realitzar un programa de 20 sessions de 45 – 60 minuts de treball amb aquests dos mètodes de treball físic. El subjecte del grup control va seguir la seva activitat habitual. Abans i després de la intervenció, es varen mesurar les variables dependents principals i secundaries respectivament. Els resultats obtinguts han revelat una petita millora en la simetria de les espatlles (+0,2 cms.) en el grup intervenció però no en la simetria de l’altura de les crestes ilíaques. El grup control no ha presentat canvis. Per tant, podem dir que és útil utilitzar la combinació dels dos mètodes físics per a millorar la postura en persones adultes que pateixen escoliosi idiopàtica.
Resumo:
Oxygen isotope measurements using SIMS and laser-fluorination methods confirm the presence of concentric and sector zoning in low-temperature (200 degrees C to < 400 degrees C) hydrothermal quartz from Alpine veins. While concentric zoning is most readily explained by changes in the chemical composition of the fluid or temperature of crystallization, the reasons for sector zoning are more difficult to explain. Relative enrichment in (18)O for crystallographically different sectors of quartz corresponds to m > r > z. Sector zoning is, however, largely limited to the exterior zones of crystals and/or to crystals with large Al (> 1000 ppm) and trace element contents, probably formed at temperatures < 250 degrees C. Differences in delta(18)O between the prismatic (m) relative to the rhombohedral (r and z) growth sectors of up to 2 parts per thousand can be explained by a combination of a face-related crystallographic and/or a growth rate control. In contrast, isotopic sector zoning of up to about 1.5 parts per thousand amongst the different rhombohedral faces increases in parallel with the trace element content and is likely to represent disequilibrium growth. This is indicated by non-systematic, up to 2 parts per thousand, differences within single growth zones and the irregular, larger or smaller, delta(18)O values (of several permil) of the exterior compared to the inner zones of the same crystals. Disequilibrium growth may be related to the large trace element content incorporated into the growing quartz at lower temperatures (< 250 degrees C) and/or be related to fluid-vapour separation, allowing crystal growth from both a vapour as well as a liquid phase.
Resumo:
A fundamental problem in cell biology is how cells define one or several discrete sites of polarity. Through mechanisms involving positive and negative feedback, the small Rho-family guanosine triphosphatase Cdc42 breaks symmetry in round budding yeast cells to define a single site of polarized cell growth. However, it is not clear how cells can define multiple sites of polarization concurrently. We discuss a study in which rod-shaped fission yeast cells, which naturally polarize growth at their two cell ends, exhibited oscillations of Cdc42 activity between these sites. We compare these findings with similar oscillatory behavior of Cdc42 detected in budding yeast cells and discuss the possible mechanism and functional outputs of these oscillations.
Resumo:
We study the families of periodic orbits of the spatial isosceles 3-body problem (for small enough values of the mass lying on the symmetry axis) coming via the analytic continuation method from periodic orbits of the circular Sitnikov problem. Using the first integral of the angular momentum, we reduce the dimension of the phase space of the problem by two units. Since periodic orbits of the reduced isosceles problem generate invariant two-dimensional tori of the nonreduced problem, the analytic continuation of periodic orbits of the (reduced) circular Sitnikov problem at this level becomes the continuation of invariant two-dimensional tori from the circular Sitnikov problem to the nonreduced isosceles problem, each one filled with periodic or quasi-periodic orbits. These tori are not KAM tori but just isotropic, since we are dealing with a three-degrees-of-freedom system. The continuation of periodic orbits is done in two different ways, the first going directly from the reduced circular Sitnikov problem to the reduced isosceles problem, and the second one using two steps: first we continue the periodic orbits from the reduced circular Sitnikov problem to the reduced elliptic Sitnikov problem, and then we continue those periodic orbits of the reduced elliptic Sitnikov problem to the reduced isosceles problem. The continuation in one or two steps produces different results. This work is merely analytic and uses the variational equations in order to apply Poincar´e’s continuation method.
Resumo:
In this paper we will find a continuous of periodic orbits passing near infinity for a class of polynomial vector fields in R3. We consider polynomial vector fields that are invariant under a symmetry with respect to a plane and that possess a “generalized heteroclinic loop” formed by two singular points e+ and e− at infinity and their invariant manifolds � and . � is an invariant manifold of dimension 1 formed by an orbit going from e− to e+, � is contained in R3 and is transversal to . is an invariant manifold of dimension 2 at infinity. In fact, is the 2–dimensional sphere at infinity in the Poincar´e compactification minus the singular points e+ and e−. The main tool for proving the existence of such periodic orbits is the construction of a Poincar´e map along the generalized heteroclinic loop together with the symmetry with respect to .
Resumo:
For polynomial vector fields in R3, in general, it is very difficult to detect the existence of an open set of periodic orbits in their phase portraits. Here, we characterize a class of polynomial vector fields of arbitrary even degree having an open set of periodic orbits. The main two tools for proving this result are, first, the existence in the phase portrait of a symmetry with respect to a plane and, second, the existence of two symmetric heteroclinic loops.
Resumo:
In this paper we consider C1 vector fields X in R3 having a “generalized heteroclinic loop” L which is topologically homeomorphic to the union of a 2–dimensional sphere S2 and a diameter connecting the north with the south pole. The north pole is an attractor on S2 and a repeller on . The equator of the sphere is a periodic orbit unstable in the north hemisphere and stable in the south one. The full space is topologically homeomorphic to the closed ball having as boundary the sphere S2. We also assume that the flow of X is invariant under a topological straight line symmetry on the equator plane of the ball. For each n ∈ N, by means of a convenient Poincar´e map, we prove the existence of infinitely many symmetric periodic orbits of X near L that gives n turns around L in a period. We also exhibit a class of polynomial vector fields of degree 4 in R3 satisfying this dynamics.