922 resultados para REFLEX MODIFICATION
Resumo:
Drosophila melanogaster enthält eine geringe Menge an 5-methyl-Cytosin. Die von mir untersuchte männliche Keimbahn von Drosophila weist jedoch keine nachweisbaren Mengen an DNA-Methylierung auf. Eine künstliche Expression der murinen de novo Methyltransferasen, DNMT3A und DNMT3B1, in den Fliegenhoden, führte nicht zu der erwarteten Methylierungszunahme und hatte keinen Effekt auf die Fruchtbarkeit der Männchen. Auch die gewebespezifische Expression unter der Verwendung des UAS/GAL4-Systems zeigte keine phenotypischen Veränderungen. Hingegen fanden wir auf Protein-Ebene des Chromatins von D. melanogaster und D. hydei spezifische Modifikationsmuster der Histone H3 und H4 in der Keimbahn, wie auch in den somatischen Zellen des Hodenschlauches. Die Modifikationsmuster der beiden Zelltypen unterscheiden sich grundlegend und weichen zudem von dem für Eu- und Heterochromatin erwarteten ab, was auf eine größere Komplexität des „Histon-Codes“ als angenommen hindeutet. Folglich liegt die epigenetische Information in Drosophila wahrscheinlich anstatt auf DNA- auf Protein-Ebene, wodurch Genexpression über die Chromatinstruktur reguliert wird. Es wurde gezeigt, dass der Transkriptionsfaktor E2F, der eine Schlüsselfunktion im Zellzyklus hat, durch unterschiedliche Transkripte offenbar quantitativ reguliert wird. Unsere Nachforschungen ergaben, dass die drei E2F1 Genprodukte in Drosophila neben ihrer Zellspezifität auch in unterschiedlichen Expressionsniveaus auftreten, was die Annahme einer quantitativen Expression unterstützt. Die verschiedenen Funktionen der multiplen Gene in Säugern, könnten so funktionell kompensiert werden. Die durch die Expression dreier dE2F1-Transkripte vermutete Synthese verschiedener Proteine konnte nicht bewiesen werden.
Resumo:
Polyamine polymers have attracted attention due to their ability to demonstrate pH dependent cationic nature and presence of highly reactive pendant amino groups. These amino groups make them suitable for a host of applications through cross-linking and derivatization. As a result the end use application of a polyamine is largely driven by the number of amino groups and the way they are attached to the polymer backbone. Thus, this piece of work describes the synthesis and investigation of properties of a novel aliphatic polyamine, poly(methylene amine); that carries maximum number of amino group on its backbone. The target polymer, poly(methylene amine); was synthesized via two major steps viz.1.synthesis of precursor polymers of poly(methylene amine) and 2. Hydrolysis of the precursor polymers to obtain poly(methylene amine). The precursor polymers poly (1,3-diacetylimidazole-2-one)(6) and poly(1,3-diformyldihydroimidazol-2-one)(7) were synthesized via radical polymerization of their respective monomers. The monomers were polymerized in bulk as well as in solution at different reaction conditions. The maximum molecular weights were achieved by polymerizing the monomers in bulk (Mn = 6.5 x 104 g/mol and Mw = 2.13 x 105 g/mol) of 6. The precursor polymers were hydrolyzed under strong reaction conditions in ethanol in presence of NaOH, LiCl at 170°C to yield poly(methylene amine). The process of hydrolysis was monitored by IR spectroscopy. The solution properties of poly(methylene amine) and its hydrochloride were investigated by viscosimetry and light scattering. The reduced viscosity of poly (methylene amine) hydrochloride as a function of polymer concentration demonstrated a behavior typical of cationic polyelectrolyte. With decrease in polymer concentration the reduced viscosity of poly(methylene amine) hydrochloride increased gradually. The dynamic light scattering studies also revealed behaviors of a polyelectrolyte. Poly(methylene amine) was reacted with electrophiles to yield novel materials. While the attachment of alkyl group onto the nitrogen would increase nucleophilicity, it would also impose steric hindrance. As a result the degree of substitution on poly(methylene amine) would be governed by both the factors. Therefore, few model reactions with electrophiles were performed on polvinylamine under similar reaction conditions in order to make a comparative evaluation. It was found that under similar reaction conditions the degree of substitution was higher in case of polyvinylamine in comparison with poly (methylene amine).This shows that the steric hindrance outweighs nucleophilicity while deciding degree of substitution of electrophiles on poly(methylene amine). The modification was further extended to its use as an initiator for ring opening polymerization of benzyloxy protected N-carboxyanhydride of z-Lysine. The resulting polymer had an interesting brush like architecture. The solid state morphology of this polymer was investigated by SAXS. The 2D-WAXS diffractograms revealed hexagonal morphology of peptide segments without formation of alpha helices.
Resumo:
In the last decades noble metal nanoparticles (NPs) arose as one of the most powerful tools for applications in nanomedicine field and cancer treatment. Glioblastoma multiforme (GBM), in particular, is one of the most aggressive malignant brain tumors that nowadays still presents a dramatic scenario concerning median survival. Gold nanorods (GNRs) and silver nanoparticles (AgNPs) could find applications such as diagnostic imaging, hyperthermia and glioblastoma therapy. During these three years, both GNRs and AgNPs were synthesized with the “salt reduction” method and, through a novel double phase transfer process, using specifically designed thiol-based ligands, lipophilic GNRs and AgNPs were obtained and separately entrapped into biocompatible and biodegradable PEG-based polymeric nanoparticles (PNPs) suitable for drug delivery within the body. Moreover, a synergistic effect of AgNPs with the Alisertib drug, were investigated thanks to the simultaneous entrapment of these two moieties into PNPs. In addition, Chlorotoxin (Cltx), a peptide that specifically recognize brain cancer cells, was conjugated onto the external surface of PNPs. The so-obtained novel nanosystems were evaluated for in vitro and in vivo applications against glioblastoma multiforme. In particular, for GNRs-PNPs, their safety, their suitability as optoacoustic contrast agents, their selective laser-induced cells death and finally, a high tumor retention were all demonstrated. Concerning AgNPs-PNPs, promising tumor toxicity and a strong synergistic effect with Alisertib was observed (IC50 10 nM), as well as good in vivo biodistribution, high tumor uptake and significative tumor reduction in tumor bearing mice. Finally, the two nanostructures were linked together, through an organic framework, exploiting the click chemistry azido-alkyne Huisgen cycloaddition, between two ligands previously attached to the NPs surface; this multifunctional complex nanosystem was successfully entrapped into PNPs with nanoparticles’ properties maintenance, obtaining in this way a powerful and promising tool for cancer fight and defeat.
Resumo:
Sensors are devices that have shown widespread use, from the detection of gas molecules to the tracking of chemical signals in biological cells. Single walled carbon nanotube (SWCNT) and graphene based electrodes have demonstrated to be an excellent material for the development of electrochemical biosensors as they display remarkable electronic properties and the ability to act as individual nanoelectrodes, display an excellent low-dimensional charge carrier transport, and promote surface electrocatalysis. The present work aims at the preparation and investigation of electrochemically modified SWCNT and graphene-based electrodes for applications in the field of biosensors. We initially studied SWCNT films and focused on their topography and surface composition, electrical and optical properties. Parallel to SWCNTs, graphene films were investigated. Higher resistance values were obtained in comparison with nanotubes films. The electrochemical surface modification of both electrodes was investigated following two routes (i) the electrografting of aryl diazonium salts, and (ii) the electrophylic addition of 1, 3-benzodithiolylium tetrafluoroborate (BDYT). Both the qualitative and quantitative characteristics of the modified electrode surfaces were studied such as the degree of functionalization and their surface composition. The combination of Raman, X-ray photoelectron spectroscopy, atomic force microscopy, electrochemistry and other techniques, has demonstrated that selected precursors could be covalently anchored to the nanotubes and graphene-based electrode surfaces through novel carbon-carbon formation.
Resumo:
I lantibiotici sono molecole peptidiche prodotte da un gran numero di batteri Gram-positivi, posseggono attività antibatterica contro un ampio spettro di germi, e rappresentano una potenziale soluzione alla crescente problematica dei patogeni multi-resistenti. La loro attività consiste nel legame alla membrana del bersaglio, che viene quindi destabilizzata mediante l’induzione di pori che determinano la morte del patogeno. Tipicamente i lantibiotici sono formati da un “leader-peptide” e da un “core-peptide”. Il primo è necessario per il riconoscimento della molecola da parte di enzimi che effettuano modifiche post-traduzionali del secondo - che sarà la regione con attività battericida una volta scissa dal “leader-peptide”. Le modifiche post-traduzionali anticipate determinano il contenuto di amminoacidi lantionina (Lan) e metil-lantionina (MeLan), caratterizzati dalla presenza di ponti-tioetere che conferiscono maggior resistenza contro le proteasi, e permettono di aggirare la principale limitazione all’uso dei peptidi in ambito terapeutico. La nisina è il lantibiotico più studiato e caratterizzato, prodotto dal batterio L. lactis che è stato utilizzato per oltre venti anni nell’industria alimentare. La nisina è un peptide lungo 34 amminoacidi, che contiene anelli di lantionina e metil-lantionina, introdotti dall’azione degli enzimi nisB e nisC, mentre il taglio del “leader-peptide” è svolto dall’enzima nisP. Questo elaborato affronta l’ingegnerizzazione della sintesi e della modifica di lantibiotici nel batterio E.coli. In particolare si affronta l’implementazione dell’espressione eterologa in E.coli del lantibiotico cinnamicina, prodotto in natura dal batterio Streptomyces cinnamoneus. Questo particolare lantibiotico, lungo diciannove amminoacidi dopo il taglio del leader, subisce modifiche da parte dell’enzima CinM, responsabile dell’introduzione degli aminoacidi Lan e MeLan, dell’enzima CinX responsabile dell’idrossilazione dell’acido aspartico (Asp), e infine dell’enzima cinorf7 deputato all’introduzione del ponte di lisinoalanina (Lal). Una volta confermata l’attività della cinnamicina e di conseguenza quella dell’enzima CinM, si è deciso di tentare la modifica della nisina da parte di CinM. A tal proposito è stato necessario progettare un gene sintetico che codifica nisina con un leader chimerico, formato cioè dalla fusione del leader della cinnamicina e del leader della nisina. Il prodotto finale, dopo il taglio del leader da parte di nisP, è una nisina completamente modificata. Questo risultato ne permette però la modifica utilizzando un solo enzima invece di due, riducendo il carico metabolico sul batterio che la produce, e inoltre apre la strada all’utilizzo di CinM per la modifica di altri lantibiotici seguendo lo stesso approccio, nonché all’introduzione del ponte di lisinoalanina, in quanto l’enzima cinorf7 necessita della presenza di CinM per svolgere la sua funzione.
Resumo:
The research activities were focused on evaluating the effect of Mo addition to mechanical properties and microstructure of A354 aluminium casting alloy. Samples, with increasing amount of Mo, were produced and heat treated. After heat treatment and exposition to high temperatures samples underwent microstructural and chemical analyses, hardness and tensile tests. The collected data led to the optimization of both casting parameters, for obtaining a homogeneous Mo distribution in the alloy, and heat treatment parameters, allowing the formation of Mo based strengthening precipitates stable at high temperature. Microstructural and chemical analyses highlighted how Mo addition in percentage superior to 0.1% wt. can modify the silicon eutectic morphology and hinder the formation of iron based β intermetallics. High temperature exposure curves, instead, showed that after long exposition hardness is slightly influenced by heat treatment while the effect of Mo addition superior to 0,3% is negligible. Tensile tests confirmed that the addition of 0.3%wt Mo induces an increase of about 10% of ultimate tensile strength after high temperature exposition (250°C for 100h) while heat treatments have slight influence on mechanical behaviour. These results could be exploited for developing innovative heat treatment sequence able to reduce residual stresses in castings produced with A354 modified with Mo.
Resumo:
Assessments of spinal nociceptive withdrawal reflexes can be used in human research both to evaluate the effect of analgesics and explore pain mechanisms related to sensitization. Before the reflex can be used as a clinical tool, normative values need to be determined in large scale studies. The aim of this study was to determine the reference values of spinal nociceptive reflexes and subjective pain thresholds (to single and repeated stimulation), and of the area of the reflex receptive fields (RRF) in 300 pain-free volunteers. The influences of gender, age, height, weight, body-mass index (BMI), body side of testing, depression, anxiety, catastrophizing and parameters of Short-Form 36 (SF-36) were analyzed by multiple regressions. The 95% confidence intervals were determined for all the tests as normative values. Age had a statistically and quantitatively significant impact on the subjective pain threshold to single stimuli. The reflex threshold to single stimulus was lower on the dominant compared to the non-dominant side. Depression had a negative impact on the subjective pain threshold to single stimuli. All the other analyses either did not reveal statistical significance or displayed quantitatively insignificant correlations. In conclusion, normative values of parameters related to the spinal nociceptive reflex were determined. This allows their clinical application for assessing central hyperexcitability in individual patients. The parameters investigated explore different aspects of sensitization processes that are largely independent of demographic characteristics, cognitive and affective factors.
Resumo:
To identify the causative mutation leading to autosomal dominant macular dystrophy, cone dystrophy, and cone-rod dystrophy in a five-generation family and to explain the high intrafamilial phenotypic variation by identifying possible modifier genes.
Resumo:
Widespread central hypersensitivity is present in chronic pain and contributes to pain and disability. According to animal studies, expansion of receptive fields of spinal cord neurons is involved in central hypersensitivity. We recently developed a method to quantify nociceptive receptive fields in humans using spinal withdrawal reflexes. Here we hypothesized that patients with chronic pelvic pain display enlarged reflex receptive fields. Secondary endpoints were subjective pain thresholds and nociceptive withdrawal reflex thresholds after single and repeated (temporal summation) electrical stimulation. 20 patients and 25 pain-free subjects were tested. Electrical stimuli were applied to 10 sites on the foot sole for evoking reflexes in the tibialis anterior muscle. The reflex receptive field was defined as the area of the foot (fraction of the foot sole) from which a muscle contraction was evoked. For the secondary endpoints, the stimuli were applied to the cutaneous innervation area of the sural nerve. Medians (25-75 percentiles) of fraction of the foot sole in patients and controls were 0.48 (0.38-0.54) and 0.33 (0.27-0.39), respectively (P=0.008). Pain and reflex thresholds after sural nerve stimulation were significantly lower in patients than in controls (P<0.001 for all measurements). This study provides for the first time evidence for widespread expansion of reflex receptive fields in chronic pain patients. It thereby identifies a mechanism involved in central hypersensitivity in human chronic pain. Reverting the expansion of nociceptive receptive fields and exploring the prognostic meaning of this phenomenon may become future targets of clinical research.
Resumo:
Recent studies have shown that the nociceptive withdrawal reflex threshold (NWR-T) and the electrical pain threshold (EP-T) are reliable measures in pain-free populations. However, it is necessary to investigate the reliability of these measures in patients with chronic pain in order to translate these techniques from laboratory to clinic. The aims of this study were to determine the test-retest reliability of the NWR-T and EP-T after single and repeated (temporal summation) electrical stimulation in a group of patients with chronic low back pain, and to investigate the association between the NWR-T and the EP-T. To this end, 25 patients with chronic pain participated in three identical sessions, separated by 1 week in average, in which the NWR-T and the EP-T to single and repeated stimulation were measured. Test-retest reliability was assessed using intra-class correlation coefficient (ICC), coefficient of variation (CV), and Bland-Altman analysis. The association between the thresholds was assessed using the coefficient of determination (r (2)). The results showed good-to-excellent reliability for both NWR-T and EP-T in all cases, with average ICC values ranging 0.76-0.90 and average CV values ranging 12.0-17.7%. The association between thresholds was better after repeated stimulation than after single stimulation, with average r (2) values of 0.83 and 0.56, respectively. In conclusion, the NWR-T and the EP-T are reliable assessment tools for assessing the sensitivity of spinal nociceptive pathways in patients with chronic pain.
Resumo:
The purpose of this study was to evaluate the anti-nociceptive activity of ketamine and isoflurane in horses using a limb withdrawal reflex (WR) model. Single and repeated stimulations were applied to the digital nerve of the left forelimb in ponies anaesthetised with isoflurane before, during and after intravenous administration of racemic ketamine. Surface electromyographic activity was recorded from the deltoid muscle. Higher stimulation intensity was required to evoke a reflex during ketamine administration. Furthermore, the amplitudes of response to stimulations were significantly and dose-dependently depressed and a flattening of the stimulus-response curves was observed. The reflex activity recovered partially once the ketamine infusion finished. The results demonstrated that the limb WR can be used to quantify the temporal effect of ketamine on the sensory-motor processing in ponies anaesthetised with isoflurane.
Resumo:
Adverse effects of combination antiretroviral therapy (CART) commonly result in treatment modification and poor adherence.
Resumo:
The acquired enamel pellicle that forms on the tooth surface serves as a natural protective barrier against dental erosion. Numerous proteins composing the pellicle serve different functions within this thin layer. Our study examined the effect of incorporated mucin and casein on the erosion-inhibiting potential of the acquired enamel pellicle. Cyclic acidic conditions were applied to mimic the erosive environment present at the human enamel interface during the consumption of soft drinks. One hundred enamel specimens were prepared for microhardness tests and distributed randomly into 5 groups (n = 20) that received the following treatment: deionized water, humidity chamber, mucin, casein, or a combination of mucin and casein. Each group was exposed to 3 cycles of a 2-hour incubation in human saliva, followed by a 2-hour treatment in the testing solution and a 1-min exposure to citric acid. The microhardness analysis demonstrated that the mixture of casein and mucin significantly improved the erosion-inhibiting properties of the human pellicle layer. The addition of individual proteins did not statistically impact the function of the pellicle. These data suggest that protein-protein interactions may play an important role in the effectiveness of the pellicle to prevent erosion.
Resumo:
;Small interfering RNAs (siRNAs) can be exploited for the selective silencing of disease-related genes via the RNA interference (RNAi) machinery and therefore raise hope for future therapeutic applications. Especially chemically modified siRNAs are of interest as they are expected to convert lead siRNA sequences into effective drugs. To study the potential of tricyclo-DNA (tc-DNA) in this context we systematically incorporated tc-DNA units at various positions in a siRNA duplex targeted to the EGFP gene that was expressed in HeLa cells. Silencing activity was measured by FACS, mRNA levels were determined by RT-PCR and the biostability of the modifed siRNAs was determined in human serum. We found that modifications in the 3'-overhangs in both the sense and antisense strands were compatible with the RNAi machinery leading to similar activities compared to wild type (wt) siRNA. Additional modifications at the 3'-end, the 5'- end and in the center of the sense (passenger) strand were also well tolerated and did not compromise activity. Extensive modifications of the 3'- and the 5'-end in the antisense (guide) strand, however, abolished RNAi activity. Interestingly, modifications in the center of the duplex on both strands, corresponding to the position of the cleavage site by AGO2, increased efficacy relative to wt by a factor of 4 at the lowest concentrations (2 nM) investigated. In all cases, reduction of EGFP fluorescence was accompanied with a reduction of the EGFP mRNA level. Serum stability analysis further showed that 3'-overhang modifications only moderately increased stability while more extensive substitution by tc-DNA residues significantly enhanced biostability.