829 resultados para Porous coatings
Resumo:
Dans ce projet de recherche, le dépôt des couches minces de carbone amorphe (généralement connu sous le nom de DLC pour Diamond-Like Carbon en anglais) par un procédé de dépôt chimique en phase vapeur assisté par plasma (ou PECVD pour Plasma Enhanced Chemical Vapor deposition en anglais) a été étudié en utilisant la Spectroscopie d’Émission Optique (OES) et l’analyse partielle par régression des moindres carrés (PLSR). L’objectif de ce mémoire est d’établir un modèle statistique pour prévoir les propriétés des revêtements DLC selon les paramètres du procédé de déposition ou selon les données acquises par OES. Deux séries d’analyse PLSR ont été réalisées. La première examine la corrélation entre les paramètres du procédé et les caractéristiques du plasma pour obtenir une meilleure compréhension du processus de dépôt. La deuxième série montre le potentiel de la technique d’OES comme outil de surveillance du procédé et de prédiction des propriétés de la couche déposée. Les résultats montrent que la prédiction des propriétés des revêtements DLC qui était possible jusqu’à maintenant en se basant sur les paramètres du procédé (la pression, la puissance, et le mode du plasma), serait envisageable désormais grâce aux informations obtenues par OES du plasma (particulièrement les indices qui sont reliées aux concentrations des espèces dans le plasma). En effet, les données obtenues par OES peuvent être utilisées pour surveiller directement le processus de dépôt plutôt que faire une étude complète de l’effet des paramètres du processus, ceux-ci étant strictement reliés au réacteur plasma et étant variables d’un laboratoire à l’autre. La perspective de l’application d’un modèle PLSR intégrant les données de l’OES est aussi démontrée dans cette recherche afin d’élaborer et surveiller un dépôt avec une structure graduelle.
Resumo:
Carbon materials are found versatile and applicable in wide range of applications. During the recent years research of carbon materials has focussed on the search of environmentally friendly, sustainable, renewable and low-cost starting material sources as well as simple cost-efficient synthesis techniques. As an alternative synthesis technique in the production of carbon materials hydrothermal carbonization (HTC) has shown a great potential. Depending on the application HTC can be performed as such or as a pretreatment technique. This technique allows synthesis of carbon materials i.e. hydrochars in closed vessel in the presence of water and self-generated pressure at relatively low temperatures (180-250 ˚C). As in many applications well developed porosity and heteroatom distribution are in a key role. Therefore in this study different techniques e.g. varying feedstock, templating and post-treatment in order to introduce these properties to the hydrochars structure were performed. Simple monosaccharides i.e. fructose or glucose and more complex compounds such as cellulose and sludge were performed as starting materials. Addition of secondary precursor e.g. thiophenecarboxaldehyde and ovalbumin was successfully exploited in order to alter heteroatom content. It was shown that well-developed porosity (SBET 550 m2/g) can be achieved via one-pot approach (i.e. exploitation of salt mixture) without conventionally used post-carbonization step. Nitrogen-enriched hydrochars indicated significant Pb(II) and Cr(VI) removal efficiency of 240 mg/g and 68 mg/g respectively. Sulphur addition into carbon network was not found to have enhancing effect on the adsorption of methylene blue or change acidity of the carbon material. However, these hydrochars were found to remove 99.9 % methylene blue and adsorption efficiency of these hydrochars remained over 90 % even after regeneration. In addition to water treatment application N-rich high temperature treated carbon materials were proven applicable as electrocatalyst and electrocatalyst support. Hydrothermal carbonization was shown to be workable technique for the production of carbon materials with variable physico-chemical properties and therefore hydrochars could be applied in several different applications e.g. as alternative low-cost adsorbent for pollutant removal from water.
Resumo:
The selective solar absorber surface is a fundamental part of a solar thermal collector, as it is responsible for the solar radiation absorption and for reduction of radiation heat losses. The surface’s optical properties, the solar absorption (á) and the emittance (å), have great impact on the solar thermal collector efficiency. In this work, two coatings types were studied: coatings obtained by physical vapor deposition (PVDs) and coatings obtained by projection with different paints (PCs) on aluminum substrates. The most common industrial high performing solar selective absorbers are nowadays produced by vacuum deposition methods, showing some disadvantages, such as lower durability, lower resistance to corrosion, adhesion and scratch, higher cost and complex production techniques. Currently, spectrally selective paints are a potential alternative for absorbing surfaces in low temperature applications, with attractive features such as ease of processing, durability and commercial availability with low cost. Solar absorber surfaces were submitted to accelerated ageing tests, specified in ISO 22975-3. This standard is applicable to the evaluation of the long term behavior and service life of selective solar absorbers for solar collectors working under typical domestic hot water system conditions. The studied coatings have, in the case of PVDs solar absorptions between 0.93 and 0.96 and emittance between 0.07 and 0.10, and in the case of PCs, solar absorptions between 0.91 and 0.93 and emittance between 0.40 and 0.60. In addition to evaluating long term behavior based on artificial ageing tests, it is also important to know the degradation mechanism of different coatings that are currently in the market. Electrochemical impedance spectroscopy (EIS) allows for the assessment of mechanistic information concerning the degradation processes, providing quantitative data as output, which can easily relate to the kinetic parameters of the system. EIS measures were carried out on Gamry FAS2 Femostat coupled with a PCL4 Controller. Two electrolytes were used, 0.5 M NaCl and 0.5 M Na2SO4, and the surfaces were tested at different immersion times up to 4 weeks. The following types of specimens have been tested: Aluminium with/without surface treatment, 3 selective paint coatings (one with a poly(urethane) binder and two with silicone binders) and 2 PVD coatings. Based on the behaviour of the specimens throughout the 4 weeks of immersion, it is possible to conclude that the coating showing the best protective properties corresponds to the selective paint coating with a polyurethane resin followed by the other paint coatings, whereas both the PVD coatings do not confer any protection to the substrate, having a deleterious effect as compared to the untreated aluminium reference.
Resumo:
To gain a better understanding of the fluid–structure interaction and especially when dealing with a flow around an arbitrarily moving body, it is essential to develop measurement tools enabling the instantaneous detection of moving deformable interface during the flow measurements. A particularly useful application is the determination of unsteady turbulent flow velocity field around a moving porous fishing net structure which is of great interest for selectivity and also for the numerical code validation which needs a realistic database. To do this, a representative piece of fishing net structure is used to investigate both the Turbulent Boundary Layer (TBL) developing over the horizontal porous moving fishing net structure and the turbulent flow passing through the moving porous structure. For such an investigation, Time Resolved PIV measurements are carried out and combined with a motion tracking technique allowing the measurement of the instantaneous motion of the deformable fishing net during PIV measurements. Once the two-dimensional motion of the porous structure is accessed, PIV velocity measurements are analyzed in connection with the detected motion. Finally, the TBL is characterized and the effect of the structure motion on the volumetric flow rate passing though the moving porous structure is clearly demonstrated.
Resumo:
In order to power our planet for the next century, clean energy technologies need to be developed and deployed. Photovoltaic solar cells, which convert sunlight into electricity, are a clear option; however, they currently supply 0.1% of the US electricity due to the relatively high cost per Watt of generation. Thus, our goal is to create more power from a photovoltaic device, while simultaneously reducing its price. To accomplish this goal, we are creating new high efficiency anti-reflection coatings that allow more of the incident sunlight to be converted to electricity, using simple and inexpensive coating techniques that enable reduced manufacturing costs. Traditional anti-reflection coatings (consisting of thin layers of non-absorbing materials) rely on the destructive interference of the reflected light, causing more light to enter the device and subsequently get absorbed. While these coatings are used on nearly all commercial cells, they are wavelength dependent and are deposited using expensive processes that require elevated temperatures, which increase production cost and can be detrimental to some temperature sensitive solar cell materials. We are developing two new classes of anti-reflection coatings (ARCs) based on textured dielectric materials: (i) a transparent, flexible paper technology that relies on optical scattering and reduced refractive index contrast between the air and semiconductor and (ii) silicon dioxide (SiO2) nanosphere arrays that rely on collective optical resonances. Both techniques improve solar cell absorption and ultimately yield high efficiency, low cost devices. For the transparent paper-based ARCs, we have recently shown that they improve solar cell efficiencies for all angles of incident illumination reducing the need for costly tracking of the sun’s position. For a GaAs solar cell, we achieved a 24% improvement in the power conversion efficiency using this simple coating. Because the transparent paper is made from an earth abundant material (wood pulp) using an easy, inexpensive and scalable process, this type of ARC is an excellent candidate for future solar technologies. The coatings based on arrays of dielectric nanospheres also show excellent potential for inexpensive, high efficiency solar cells. The fabrication process is based on a Meyer rod rolling technique, which can be performed at room-temperature and applied to mass production, yielding a scalable and inexpensive manufacturing process. The deposited monolayer of SiO2 nanospheres, having a diameter of 500 nm on a bare Si wafer, leads to a significant increase in light absorption and a higher expected current density based on initial simulations, on the order of 15-20%. With application on a Si solar cell containing a traditional anti-reflection coating (Si3N4 thin-film), an additional increase in the spectral current density is observed, 5% beyond what a typical commercial device would achieve. Due to the coupling between the spheres originated from Whispering Gallery Modes (WGMs) inside each nanosphere, the incident light is strongly coupled into the high-index absorbing material, leading to increased light absorption. Furthermore, the SiO2 nanospheres scatter and diffract light in such a way that both the optical and electrical properties of the device have little dependence on incident angle, eliminating the need for solar tracking. Because the layer can be made with an easy, inexpensive, and scalable process, this anti-reflection coating is also an excellent candidate for replacing conventional technologies relying on complicated and expensive processes.
Resumo:
Interference lithography can create large-area, defect-free nanostructures with unique optical properties. In this thesis, interference lithography will be utilized to create photonic crystals for functional devices or coatings. For instance, typical lithographic processing techniques were used to create 1, 2 and 3 dimensional photonic crystals in SU8 photoresist. These structures were in-filled with birefringent liquid crystal to make active devices, and the orientation of the liquid crystal directors within the SU8 matrix was studied. Most of this thesis will be focused on utilizing polymerization induced phase separation as a single-step method for fabrication by interference lithography. For example, layered polymer/nanoparticle composites have been created through the one-step two-beam interference lithographic exposure of a dispersion of 25 and 50 nm silica particles within a photopolymerizable mixture at a wavelength of 532 nm. In the areas of constructive interference, the monomer begins to polymerize via a free-radical process and concurrently the nanoparticles move into the regions of destructive interference. The holographic exposure of the particles within the monomer resin offers a single-step method to anisotropically structure the nanoconstituents within a composite. A one-step holographic exposure was also used to fabricate self- healing coatings that use water from the environment to catalyze polymerization. Polymerization induced phase separation was used to sequester an isocyanate monomer within an acrylate matrix. Due to the periodic modulation of the index of refraction between the monomer and polymer, the coating can reflect a desired wavelength, allowing for tunable coloration. When the coating is scratched, polymerization of the liquid isocyanate is catalyzed by moisture in air; if the indices of the two polymers are matched, the coatings turn transparent after healing. Interference lithography offers a method of creating multifunctional self-healing coatings that readout when damage has occurred.
Resumo:
In this work is performed the study of the hexane isomers separation with MOFs in order to improve the octane number of gasoline. The studies were performed with MOFs: MIL-125-Amine, MIL-53(Fe)-Cl, MIL-53(Fe)-Br and Fe-TazBz(DMF). It was observed that higher loadings were obtained for high pressure and low temperature. With MOFs like MIL-53(Fe)-Cl and MIL-53(Fe)-Br the components weren’t separated. In MIL-125-Amine hexane isomers were separated according to their boiling point, but the selectivity was small. The best result was obtained with MOF Fe-TazBz(DMF), because of the higher affinity of n-hex with this MOF, the separation from the other isomers was easier.
Resumo:
The most common method of achieve the required fire resistance is by the use of passive fire protection systems, being intumescent coatings the fire protection material frequently used. These are usually considered thin film coatings as they are applied with a dry film thickness (DFT) between 0.3-3 [mm]. The required DFT is obtained by experimental fire resistance tests performed to assess the contribution of this reactive fire protection material to the steel member fire resistance. This tests are done after dry coating and a short time period of atmospheric conditioning, at constant temperature and humidity. As the coatings formulation is mainly made from polymeric basis compounds, it is expected that the environmental factors, such temperature, humidity and UV radiation (UVA and UVB) significantly affect the intumescent coating fire protection performance and its durability. This work presents a research study about the effects of aging on the fire protection performance of intumescent coatings. A commercial water based coating is submitted to an accelerated aging cycle, using a QUV Accelerated Weathering Tester. This tests aim to simulate 10 years of the coating natural aging. The coating durability is tested comparing the fire protection of small steel samples submitted to a radiant heat flux exposure from a cone calorimeter. In total, 28 tests were performed on intumescent coating protected steel specimens, of which 14 specimens were tested before the hydrothermal aging test and other 14 after accelerated aging. The experimental tests results of the steel temperature evolution shows that increasing the intumescent dry coating film thickness, the fire resistance time increases. After the accelerated aging cycles, the coating lose their ability to expand, resulting in an increase of the steel temperature of approximately 200 [ºC], compared to the samples without aging.
Resumo:
International audience