721 resultados para Polymer fibers


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Poly(ortho-phenylenediamine) and oligomers of ortho-phenylenediamine were chemically synthesized and characterized by UV-vis, (1)H and (13)C NMR, FTIR and resonance Raman spectroscopies. Polymerization of ortho-phenylenediamine in HCl medium with ammonium persulfate only leads the trimer compound, in disagreement with some previous reports. Nevertheless, in acetic acid medium it was possible to prepare a polymer constituted by ladder phenazinic segments with different protonation levels and quinonediimine rings (polyaniline-like). X-ray absorption at N K-edge (N K XANES), X-ray photoelectron (XPS) and Electron paramagnetic resonance (EPR) spectroscopies were used to determine the different kinds of nitrogen presents in this class of polymer. N K XANES spectrum of poly(ortho-phenylenediamine) shows the band of -N=nitrogen of non-protonated phenazinic rings at 398.2 eV. In addition, XPS and N K XANES data confirm the presence of different types of protonated nitrogens in the polymeric poly(ortho-phenylenediamine) chain and the EPR spectrum shows that the polymer has a very weak polaronic signal. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present study, films based on linter cellulose and chitosan were prepared using an aqueous solution of sodium hydroxide (NaOH)/thiourea as the solvent system. The dissolution process of cellulose and chitosan in NaOH/thiourea aqueous solution was followed by the partial chain depolymerization of both biopolymers, which facilitates their solubilization. Biobased films with different chitosan/cellulose ratios were then elaborated by a casting method and subsequent solvent evaporation. They were characterized by X-ray analysis, scanning electron microscopy (SEM), atomic force microscopy (AFM), thermal analysis, and tests related to tensile strength and biodegradation properties. The SEM images of the biofilms with 50/50 and 60/40 ratio of chitosan/cellulose showed surfaces more wrinkled than the others. The AFM images indicated that higher the content of chitosan in the biobased composite film, higher is the average roughness value. It was inferred through thermal analysis that the thermal stability was affected by the presence of chitosan in the films; the initial temperature of decomposition was shifted to lower levels in the presence of chitosan. Results from the tests for tensile strength indicated that the blending of cellulose and chitosan improved the mechanical properties of the films and that an increase in chitosan content led to production of films with higher tensile strength and percentage of elongation. The degradation study in a simulated soil showed that the higher the crystallinity, the lower is the biodegradation rate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Treated sisal fibers were used as reinforcement of polypropylene (PP) composites, with maleic anhydride-grafted PP (MAPP) as coupling agent. The composites were made by melting processing of PP with the fiber in a heated roller followed by multiple extrusions in a single-screw extruder. Injection molded specimens were produced for the characterization of the material. In order to improve the adhesion between fiber and matrix and to eliminate odorous substances, sisal fibers were treated with boiling water and with NaOH solutions at 3 and 10 wt.%. The mechanical properties of the composites were assessed by tensile, bend and impact tests. Additionally, the morphology of the composites and the adhesion at he fiber-matrix interface were analyzed by SEM. The fiber treatment led to very light and odorless materials, with yields of 95, 74 and 62 wt.% for treatments with hot water, 3 and 10 wt.% soda solution respectively. Fiber treatment caused an appreciable change in fiber characteristics, yet the mechanical properties under tensile and flexural tests were not influenced by that treatment. Only the impact strength increased in the composites with alkali-treated sisal fibers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tannin-phenolic polymers prepared using tannin, a macromolecule obtained from natural sources, were used in the preparation of composites reinforced with coir fibers. The composites based on tannin-phenolic polymers (50% (w/w) of tannin as substitute of the phenol) were prepared using the coir fibers as reinforcement (30-70% (w/w), 3.0-6.0 cm, randomly distributed). The Izod impact strength of the composites showed an improvement in this property due to the incorporation of coir fibers in the tannin-phenolic matrices. The SEM images showed excellent adhesion at the fiber/matrix interface. The coir fiber had bundles regularly spaced, which enhanced the diffusion of the resin into the fiber. In addition, the high lignin content of this fiber results in a high concentration of aromatic rings, which increased the compatibility with the matrix. The values of the diffusion coefficient of water, determined using Fick`s laws, show that there was no correlation between the fiber percentage and the water diffusion. The DMTA curves showed that the storage moduli of the composites reinforced with coir fibers were considerably higher than that of the thermoset, and the increase in the proportion of fibers led to a proportional increase in the storage moduli of these materials. The biobased composites obtained have potential for non-structural applications, such as in the internal parts of automotives vehicles. To our knowledge, this is the first study on this kind of biobased composites. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The performance of a polymer electrolyte membrane fuel cell (PEMFC) operating on a simulated hydrocarbon reformate is described. The anode feed stream consisted of 80% H(2),similar to 20% N(2), and 8 ppm hydrogen sulfide (H(2)S). Cell performance losses are calculated by evaluating cell potential reduction due to H(2)S contamination through lifetime tests. It is found that potential, or power, loss under this condition is a result of platinum surface contamination with elemental sulfur. Electrochemical mass spectroscopy (EMS) and electrochemical techniques are employed, in order to show that elemental sulfur is adsorbed onto platinum, and that sulfur dioxide is one of the oxidation products. Moreover, it is demonstrated that a possible approach for mitigating H(2)S poisoning on the PEMFC anode catalyst is to inject low levels of air into the H(2)S-contaminated anode feeding stream. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present study, the main focus was the characterization and application of the by-product lignin isolated through an industrial organosolv acid hydrolysis process from sugarcane bagasse, aiming at the production of bioethanol. The sugarcane lignin was characterized and used to prepare phenolic-type resins. The analysis confirmed that the industrial sugarcane lignin is of HGS type, with a high proportion of the less substituted aromatic ring p-hydroxyphenyl units, which favors further reaction with formaldehyde. The lignin-formaldehyde resins were used to produce biobased composites reinforced with different proportions of randomly distributed sisal fibers. The presence of lignin moieties in both the fiber and matrix increases their mutual affinity, as confirmed by SEM images, which showed good adhesion at the biocomposite fiber/matrix interface. This in turn allowed good load transference from the matrix to the fiber, leading to biobased composites with good impact strength (near 500 J m(-1) for a 40 wt% sisal fiber-reinforced composite). The study demonstrates that sugarcane bagasse lignin obtained from a bioethanol plant can be used without excessive purification in the preparation of lignocellulosic fiber-reinforced biobased composites displaying high mechanical properties. Biotechnol. Bioeng. 2010;107: 612-621. (C) 2010 Wiley Periodicals, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes the preparation and characterization of a solid polymer electrolyte based on amylopectin-rich starch plasticized with glycerol. The samples were characterized through ionic conductivity (sigma) measurements, scanning electron microscopy, thermal analysis, and spectroscopy in the UV-Vis-NIR region. The results showed that the highest sigma (1.1 x 10(-4) Scm(-1) at 30 degrees C) was obtained for the sample with n = [O]/[Li] = 6.5 ratio. In addition, the samples plasticized with 30-35 wt.% of glycerol presented high ionic conductivity, transparency and conduction stability. The ionic conductivity measurements as a function of lithium salt contents showed a maximum for n=6.5. The ionic conductivity as a function of time for amylopectin-rich starch plasticized with 30 wt.% of glycerol and containing [O]/[Li] = 10 showed conduction stability over 6 months (sigma similar to 3.01 x 10(-5) S cm(-1)). (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Environmentally friendly biocomposites were successfully prepared by dissolving chitosan and cellulose in a NaOH/thiourea solvent with subsequent heating and film casting. Under the considered conditions, NaOH/thiourea led to chain depolymerization of both biopolymers without a dramatic loss of film forming capacities. Compatibility of both biopolymers in the biocomposite was firstly assessed through scanning electron microscopy, revealing an intermediate organization between cellulose fiber network and smoothness of pure chitosan. DSC analyses led to exothermic peaks close to 285 and 315 degrees C for the biocomposite, compared to the exothermic peaks of chitosan (275 degrees C) and cellulose (265 and 305 degrees C), suggesting interactions between chitosan and cellulose. Contact angle analyses pointed out the deformation that can occur at the surface due to the high affinity of the;e materials with water. T(2) NMR relaxometry behavior of biocomposites appeared to be dominated by chitosan. Other properties of films, as crystallinity, water sorption isotherms, among others, are also discussed. (C) 2010 Published by Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lignocellulosic materials can significantly contribute to the development of biobased composites. In this work, glyoxal-phenolic resins for composites were prepared using glyoxal, which is a dialdehyde obtained from several natural resources. The resins were characterized by (1)H, (13)C, (2)D, and (31)P NMR spectroscopies. Resorcinol (10%) was used as an accelerator for curing the glyoxal-phenol resins in order to obtain the thermosets. The impact-strength measurement showed that regardless of the cure cycle used, the reinforcement of thermosets by 30% (w/w) sisal fibers improved the impact strength by one order of magnitude. Curing with cycle 1 (150 degrees C) induced a high diffusion coefficient for water absorption in composites, due to less interaction between the sisal fibers and water. The composites cured with cycle 2 (180 degrees C) had less glyoxal resin coverage of the cellulosic fibers, as observed by images of the fractured interface observed by SEM. This study shows that biobased composites with good properties can be prepared using a high proportion of materials obtained from natural resources. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

New types of polymer electrolytes based on agar have been prepared and characterized by impedance spectroscopy, X-ray diffraction measurements, UV-vis spectroscopy and scanning electronic microscopy (SEMI). The best ionic conductivity has been obtained for the samples containing a concentration of 50 wt.% of acetic acid. As a function of the temperature the ionic conductivity exhibits an Arrhenius behavior increasing from 1.1 x 10(-4) S/cm at room temperature to 9.6 x 10(-4) S/cm at 80 degrees C. All the samples showed more than 70% of transparency in the visible region of the electromagnetic spectrum, a very homogeneous surface and a predominantly amorphous structure. All these characteristics imply that these polymer electrolytes can be applied in electrochromic devices. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gelatin is a cheap and abundant natural product with very good biodegradation properties and can be used to obtain acetic acid or LiClO(4)-based gel polymer electrolytes (GPEs) with high ionic conductivity and good stability. This article presents results of GPEs obtained by the plasticization of gelatin and addition of LiBF(4), where the optimization of the system was achieved by using a factorial design type 22 with two variables: glycerol and LiBF(4). From this analysis it was stated that the effect of glycerol as a plasticizer on the ionic conductivity results is much more important than the effect obtained by varying the lithium salt content or the effect of the interaction of both variables. Also all the samples were characterized by X-ray diffraction measurements, UV-vis-NIR spectroscopy and scanning electron microscopy (SEM) and impedance spectroscopy. The ionic conductivity results of all analyzed samples as a function of temperature obey predominantly an Arrhenius relationship and the samples are stable up to 160 degrees C. Good conductivity results combined with transparency and good adhesion to the electrodes have shown that gelatin-based GPEs are very promising materials to be used as solid electrolytes in electrochromic devices. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of the present work was to investigate the toughening of phenolic thermoset and its composites reinforced with sisal fibers, using hydroxyl-terminated polybutadiene rubber (HTPB) as both impact modifier and coupling agent. Substantial increase in the impact strength of the thermoset was achieved by the addition 10% of HTPB. Scanning electron microscopy (SEM) images of the material with 15% HTPB content revealed the formation of some rubber aggregates that reduced the efficiency of the toughening mechanism. In composites, the toughening effect was observed only when 2.5% of HTPB was added. The rubber aggregates were found located mainly at the matrix-fiber interface suggesting that HTPB could be used as coupling agent between the sisal fibers and the phenolic matrix. A composite reinforced with sisal fibers pre-impregnated with HTPB was then prepared; its SEM images showed the formation of a thin coating of HTPB on the surface of the fibers. The ability of HTBP as coupling agent between sisal fibers and phenolic matrix was then investigated by preparing a composite reinforced with sisal fibers pre-treated with HTPB. As revealed by its SEM images, the HTPB pre-treatment of the fibers resulted on the formation of a thin coating of HTPB on the surface of the fibers, which provided better compatibility between the fibers and the matrix at their interface, resulting in a material with low water absorption capacity and no loss of impact strength. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent times, increasing attention has been paid to the use of renewable resources particularly of plant origin keeping in view the ecological concerns, renewability and many governments passing laws for the use of such materials. On the other hand, despite abundant availability of lignocellulosic materials in Brazil, very few attempts have been made about their utilization, probably due to lack of sufficient structure/property data. Systematic studies to know their properties and morphology may bridge this gap while leading to value addition to these natural materials. Chemical composition, X-ray powder diffraction, and morphological studies and thermal behavior aspects in respect of banana, sugarcane bagasse sponge gourd fibers of Brazilian origin are presented. Chemical compositions of the three fibers are found to be different than those reported earlier. X-ray diffraction patterns of these three fibers exhibit mainly cellulose type I structure with the crystallinity indices of 39%, 48% and 50% respectively for these fibers. Morphological studies of the fibers revealed different sizes and arrangement of cells. Thermal stability of all the fibers is found to be around 200 degrees C. Decomposition of both cellulose and hemicelluloses in the fibers takes place at 300 degrees C and above, while the degradation of fibers takes place above 400 degrees C. These data may help finding new uses for these fibers. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cellulose cassava bagasse nanofibrils (CBN) were directly extracted from a by-product of the cassava starch (CS) industry, viz. the cassava bagasse (CB), The morphological structure of the ensuing nanoparticles was investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM), presence of other components such as sugars by high performance liquid chromatography (HPLC), thermogravimetric analysis (TGA), and X-ray diffraction (XRD) experiments. The resulting nanofibrils display a relatively low crystallinity and were found to be around 2-11 nm thick and 360-1700 nm long. These nanofibrils were used as reinforcing nanoparticles in a thermoplastic cassava starch matrix plasticized using either glycerol or a mixture of glycerol/sorbitol (1:1) as plasticizer. Nanocomposite films were prepared by a melting process. The reinforcing effect of the filler evaluated by dynamical mechanical tests (DMA) and tensile tests was found to depend on the nature of the plasticizer employed. Thus, for the glycerol-plasticized matrix-based composites, it was limited especially due to additional plasticization by sugars originating from starch hydrolysis during the acid extraction. This effect was evidenced by the reduction of glass vitreous temperature of starch after the incorporation of nanofibrils in TPSG and by the increase of elongation at break in tensile test. On the other hand, for glycerol/sorbitol plasticized nanocomposites the transcrystallization of amylopectin in nanofibrils surface hindered good performances of CBN as reinforcing agent for thermoplastic cassava starch. The incorporation of cassava bagasse cellulose nanofibrils in the thermoplastic starch matrices has resulted in a decrease of its hydrophilic character especially for glycerol plasticized sample. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The surface of ramie cellulose whiskers has been chemically modified by grafting organic acid chlorides presenting different lengths of the aliphatic chain by an esterification reaction. The occurrence of the chemical modification was evaluated by FTIR and X-ray photoelectron spectroscopies, elemental analysis and contact angle measurements. The crystallinity of the particles was not altered by the chain grafting, but it was shown that covalently grafted chains were able to crystallize at the cellulose surface when using C18. Both unmodified and functionalized nanoparticles were extruded with low density polyethylene to prepare nanocomposite materials. The homogeneity of the ensuing nanocomposites was found to increase with the length of the grafted chains. The thermomechanical properties of processed nanocomposites were studied by differential scanning calorimetry (DSC), dynamical mechanical analysis (DMA) and tensile tests. A significant improvement in terms of elongation at break was observed when sufficiently long chains were grafted on the surface of the nanoparticles. It was ascribed to improved dispersion of the nanoparticles within the LDPE matrix. (C) 2009 Elsevier Ltd. All rights reserved.