677 resultados para Plasmodium falciparum


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação de mestrado, Ciências Farmacêuticas, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2015

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação de Mestrado, Ciências Farmacêuticas, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2015

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tese de doutoramento, Ciências Biomédicas (Microbiologia e Parasitologia), Universidade de Lisboa, Faculdade de Medicina, 2014

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Malaria, a disease caused by Plasmodium, represents a major health problem with a still disconcertingly high mortality rate (655 000 malaria deaths were estimated by the World Health Organization in 2012), mainly in Africa [1]. After a bite by an infected Anopheles mosquito occurs, Plasmodium sporozoites reach their target organ, the liver, within minutes. After traversing several hepatocytes, the parasite invades a final one and establishes a parasitophorous vacuole, where it replicates exponentially generating thousands of infective merozoites, the red blood cell infectious forms that are released in the blood stream. The liver stage is the first obligatory phase of malaria infection and, although no symptoms are associated with it, it is absolutely crucial to the establishment of a successful infection.(...)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Malaria is one of the most devastating diseases in the world. In Plasmodium endemic regions, pregnant women are among the most vulnerable groups. Pregnancy Associated Malaria (PAM) threatens both maternal and foetal lives. Despite differences between human and mouse placentas PAM mouse models recapitulate key pathological features of human PAM. Here we describe new PAM models of mid gestation infection in the C57BL/6 mouse.(...)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Malaria is an infectious disease of humans and other animals including birds, reptiles and most mammals. It is transmitted via the inoculation of Plasmodium sporozoites into the skin through the bite of an infected female Anopheles mosquito. Although every year, around 700.000 lives are perished, mainly children under the age of 3-5 years old, to Plasmodium infection this deadly parasite has a relatively low efficiency of transmission from mosquitoes into humans.(...)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In 2008, several publications have highlighted the role of climate change and globalization on the epidemiology of infectious diseases. Studies have shown the extension towards Europe of diseases such as Crimea-Congo fever (Kosovo, Turkey and Bulgaria), leismaniosis (Cyprus) and chikungunya virus infection (Italy). The article also contains comments on Plasmodium knowlesi, a newly identified cause of severe malaria in humans, as well as an update on human transmission of the H5NI avian influenza virus. It also mentions new data on Bell's palsy as well as two vaccines (varicella-zoster and pneumococcus), and provides a list of recent guidelines for the treatment of common infectious diseases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In disease ecology, there is growing evidence that environmental quality interacts with parasite and host to determine host susceptibility to an infection. Most studies of malaria parasites have focused on the infection costs incurred by the hosts, and few have investigated the costs on mosquito vectors. The interplay between the environment, the vector and the parasite has therefore mostly been ignored and often relied on unnatural or allopatric Plasmodium/vector associations. Here, we investigated the effects of natural avian malaria infection on both fecundity and survival of field-caught female Culex pipiens mosquitoes, individually maintained in laboratory conditions. We manipulated environmental quality by providing mosquitoes with different concentrations of glucose-feeding solution prior to submitting them to a starvation challenge. We used molecular-based methods to assess mosquitoes' infection status. We found that mosquitoes infected with Plasmodium had lower starvation resistance than uninfected ones only under low nutritional conditions. The effect of nutritional stress varied with time, with the difference of starvation resistance between optimally and suboptimally fed mosquitoes increasing from spring to summer, as shown by a significant interaction between diet treatment and months of capture. Infected and uninfected mosquitoes had similar clutch size, indicating no effect of infection on fecundity. Overall, this study suggests that avian malaria vectors may suffer Plasmodium infection costs in their natural habitat, under certain environmental conditions. This may have major implications for disease transmission in the wild.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

GIMAP (GTPase of the immunity-associated protein family) proteins are a family of putative GTPases believed to be regulators of cell death in lymphomyeloid cells. GIMAP1 was the first reported member of this gene family, identified as a gene up-regulated at the RNA level in the spleens of mice infected with the malarial parasite, Plasmodium chabaudi. Methods A monoclonal antibody against mouse GIMAP1 was developed and was used to analyse the expression of the endogenous protein in tissues of normal mice and in defined sub-populations of cells prepared from lymphoid tissues using flow cytometry. It was also used to assess the expression of GIMAP1 protein after infection and/or immunization of mice with P. chabaudi. Real-time PCR analysis was employed to measure the expression of GIMAP1 for comparison with the protein level analysis. Results GIMAP1 protein expression was detected in all lineages of lymphocytes (T, B, NK), in F4/80+ splenic macrophages and in some lymphoid cell lines. Additional evidence is presented suggesting that the strong expression by mature B cells of GIMAP1 and other GIMAP genes and proteins seen in mice may be a species-dependent characteristic. Unexpectedly, no increase was found in the expression of GIMAP1 in P. chabaudi infected mice at either the mRNA or protein level, and this remained so despite applying a number of variations to the protocol. Conclusion The model of up-regulation of GIMAP1 in response to infection/immunization with P. chabaudi is not a robustly reproducible experimental system. The GIMAP1 protein is widely expressed in lymphoid cells, with an interesting increase in expression in the later stages of B cell development. Alternative approaches will be required to define the functional role of this GTPase in immune cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

P-glycoproteins (p-gps) are ubiquitous membrane proteins from the ABC (ATP-binding cassette) family. They have been found in many animals, bacteria, plants and fungi and are extremely important in regulating a wide range of xenobiotics including pesticides. P-gps have been linked to xenobiotic resistance, most famously in resistance to cancer drug treatments. Their wide substrate range has led to what is known as "multidrug resistance", where resistance developed to one type of xenobiotic gives resistance to a different classes of xenobiotic. P-gps are a major contributor to drug resistance in mammalian tumours and infections of protozoan parasites such as Plasmodium and Leishmania. There is a growing body of literature suggesting that p-gps, and other ABC proteins, are important in regulating pesticide toxicity and represent potential control failure through the development of pesticide resistance, in both agricultural and medical pests. At the same time, aspects of their biochemistry offer new hope in pest control, in particular in furthering our understanding of toxicity and offering insights into how we can improve control without recourse to new chemical discovery. (c) 2008 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Parasitic infections cause a myriad of responses in their mammalian hosts, on immune as well as on metabolic level. A multiplex panel of cytokines and metabolites derived from four parasite-rodent models, namely, Plasmodium berghei-mouse, Trypanosoma brucei brucei-mouse, Schistosoma mansoni-mouse, and Fasciola hepatica-rat were statistically coanalyzed. 1H NMR spectroscopy and multivariate statistical analysis were used to characterize the urine and plasma metabolite profiles in infected and noninfected animals. Each parasite generated a unique metabolic signature in the host. Plasma cytokine concentrations were obtained using the ‘Meso Scale Discovery’ multi cytokine assay platform. Multivariate data integration methods were subsequently used to elucidate the component of the metabolic signature which is associated with inflammation and to determine specific metabolic correlates with parasite-induced changes in plasma cytokine levels. For example, the relative levels of acetyl glycoproteins extracted from the plasma metabolite profile in the P. berghei-infected mice were statistically correlated with IFN-γ, whereas the same cytokine was anticorrelated with glucose levels. Both the metabolic and the cytokine data showed a similar spatial distribution in principal component analysis scores plots constructed for the combined murine data, with samples from all infected animals clustering according to the parasite species and whereby the protozoan infections (P. berghei and T. b. brucei) grouped separately from the helminth infection (S. mansoni). For S. mansoni, the main infection-responsive cytokines were IL-4 and IL-5, which covaried with lactate, choline, and D-3-hydroxybutyrate. This study demonstrates that the inherently differential immune response to single and multicellular parasites not only manifests in the cytokine expression, but also consequently imprints on the metabolic signature, and calls for in-depth analysis to further explore direct links between immune features and biochemical pathways.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: MS-based proteomics was applied to the analysis of the medicinal plant Artemisia annua, exploiting a recently published contig sequence database (Graham et al. (2010) Science 327, 328–331) and other genomic and proteomic sequence databases for comparison. A. annua is the predominant natural source of artemisinin, the precursor for artemisinin-based combination therapies (ACTs), which are the WHO-recommended treatment for P. falciparum malaria. Results: The comparison of various databases containing A. annua sequences (NCBInr/viridiplantae, UniProt/ viridiplantae, UniProt/A. annua, an A. annua trichome Trinity contig database, the above contig database and another A. annua EST database) revealed significant differences in respect of their suitability for proteomic analysis, showing that an organism-specific database that has undergone extensive curation, leading to longer contig sequences, can greatly increase the number of true positive protein identifications, while reducing the number of false positives. Compared to previously published data an order-of-magnitude more proteins have been identified from trichome-enriched A. annua samples, including proteins which are known to be involved in the biosynthesis of artemisinin, as well as other highly abundant proteins, which suggest additional enzymatic processes occurring within the trichomes that are important for the biosynthesis of artemisinin. Conclusions: The newly gained information allows for the possibility of an enzymatic pathway, utilizing peroxidases, for the less well understood final stages of artemisinin’s biosynthesis, as an alternative to the known non-enzymatic in vitro conversion of dihydroartemisinic acid to artemisinin. Data are available via ProteomeXchange with identifier PXD000703.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To study the impact of Amazonian forest fragmentation on the mosquito fauna, an inventory of Culicidae was conducted in the upland forest research areas of the Biological Dynamics of Forest Fragments Project located 60 km north of Manaus, Amazonas, Brazil. The culicid community was sampled monthly between February 2002 and May 2003. CDC light traps, flight interception traps, manual aspiration, and net sweeping were used to capture adult specimens along the edges and within forest fragments of different sizes (1, 10, and 100 ha), in second-growth areas surrounding the fragments and around camps. We collected 5,204 specimens, distributed in 18 genera and 160 species level taxa. A list of mosquito taxa is presented with 145 species found in the survey, including seven new records for Brazil, 16 new records for the state of Amazonas, along with the 15 morphotypes that probably represent undescribed species. No exotic species [Aedes aegypti (L.) and Aedes albopictus (Skuse)] were found within the sampled areas. Several species collected are potential vectors of Plasmodium causing human malaria and of various arboviruses. The epidemiological and ecological implications of mosquito species found are discussed, and the results are compared with other mosquito inventories from the Amazon region.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Anopheles (Nyssorhynchus) benarrochi s.l., Anopheles (Nyssorhynchus) oswaldoi s.l., and Anopheles (Nyssorhynchus) konderi s.l. collected in Acrelandia, state of Acre, Brazil, were identified based on morphological characters of the male genitalia, fourth-instar larvae, and pupae. Morphological variation was observed in the male genitalia of these species in comparison with specimens from other localities in Brazil. DNA sequence from the nuclear ribosomal second internal transcribed spacer of individuals identified as An. benarrochi s.l. by using male genitalia characteristics showed that the various morphological forms are conspecific but are distinct from An. benarrochi B from Colombia. Anopheles konderi s.l. and An. oswaldoi s.l. both misidentified as An. oswaldoi s.s. (Peryassu) throughout Brazil, may actually comprise at least two undescribed species. Diagnostic morphological characteristics of the male genitalia are provided to distinguish Anopheles benarrochi s.l., Anopheles oswaldoi s.l., and Anopheles konderi s.l. from morphologically similar species. Incrimination of An. oswaldoi s.s. in malaria transmission in Brazil needs further investigation because other undescribed species from Acre may have been confounded with this taxon.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Three transgenic Anopheles stephensi lines were established that strongly inhibit transmission of the mouse malaria parasite Plasmodium berghei. Fitness of the transgenic mosquitoes was assessed based on life table analysis and competition experiments between transgenic and wild-type mosquitoes. Life table analysis indicated low fitness load for the 2 single-insertion transgenic mosquito lines VD35 and VD26 and no load for the double-insertion transgenic mosquito line VD9. However, in cage experiments, where each of the 3 homozygous transgenic mosquitoes was mixed with nontransgenic mosquitoes, transgene frequency of all 3 lines decreased with time. Further experiments suggested that reduction of transgene frequency is a consequence of reduced mating success, reduced reproductive capacity, and/or insertional mutagenesis, rather than expression of the transgene itself. Thus, for transgenic mosquitoes released in the field to be effective in reducing malaria transmission, a driving mechanism will be required.