986 resultados para Parallel methods
Resumo:
Shifting from chemical to biotechnological processes is one of the cornerstones of 21st century industry. The production of a great range of chemicals via biotechnological means is a key challenge on the way toward a bio-based economy. However, this shift is occurring at a pace slower than initially expected. The development of efficient cell factories that allow for competitive production yields is of paramount importance for this leap to happen. Constraint-based models of metabolism, together with in silico strain design algorithms, promise to reveal insights into the best genetic design strategies, a step further toward achieving that goal. In this work, a thorough analysis of the main in silico constraint-based strain design strategies and algorithms is presented, their application in real-world case studies is analyzed, and a path for the future is discussed.
Resumo:
The Closest Vector Problem (CVP) and the Shortest Vector Problem (SVP) are prime problems in lattice-based cryptanalysis, since they underpin the security of many lattice-based cryptosystems. Despite the importance of these problems, there are only a few CVP-solvers publicly available, and their scalability was never studied. This paper presents a scalable implementation of an enumeration-based CVP-solver for multi-cores, which can be easily adapted to solve the SVP. In particular, it achieves super-linear speedups in some instances on up to 8 cores and almost linear speedups on 16 cores when solving the CVP on a 50-dimensional lattice. Our results show that enumeration-based CVP-solvers can be parallelized as effectively as enumeration-based solvers for the SVP, based on a comparison with a state of the art SVP-solver. In addition, we show that we can optimize the SVP variant of our solver in such a way that it becomes 35%-60% faster than the fastest enumeration-based SVP-solver to date.
Resumo:
Project Management involves onetime endeavors that demand for getting it right the first time. On the other hand, project scheduling, being one of the most modeled project management process stages, still faces a wide gap from theory to practice. Demanding computational models and their consequent call for simplification, divert the implementation of such models in project management tools from the actual day to day project management process. Special focus is being made to the robustness of the generated project schedules facing the omnipresence of uncertainty. An "easy" way out is to add, more or less cleverly calculated, time buffers that always result in project duration increase and correspondingly, in cost. A better approach to deal with uncertainty seems to be to explore slack that might be present in a given project schedule, a fortiori when a non-optimal schedule is used. The combination of such approach to recent advances in modeling resource allocation and scheduling techniques to cope with the increasing flexibility in resources, as can be expressed in "Flexible Resource Constraint Project Scheduling Problem" (FRCPSP) formulations, should be a promising line of research to generate more adequate project management tools. In reality, this approach has been frequently used, by project managers in an ad-hoc way.
Resumo:
Extreme value theory (EVT) deals with the occurrence of extreme phenomena. The tail index is a very important parameter appearing in the estimation of the probability of rare events. Under a semiparametric framework, inference requires the choice of a number k of upper order statistics to be considered. This is the crux of the matter and there is no definite formula to do it, since a small k leads to high variance and large values of k tend to increase the bias. Several methodologies have emerged in literature, specially concerning the most popular Hill estimator (Hill, 1975). In this work we compare through simulation well-known procedures presented in Drees and Kaufmann (1998), Matthys and Beirlant (2000), Beirlant et al. (2002) and de Sousa and Michailidis (2004), with a heuristic scheme considered in Frahm et al. (2005) within the estimation of a different tail measure but with a similar context. We will see that the new method may be an interesting alternative.
Resumo:
Dissertação de mestrado integrado em Engenharia Mecânica
Resumo:
Dissertação de mestrado integrado em Engenharia Biomédica (área de especialização em Engenharia Clínica)
Resumo:
In this paper we consider the approximate computation of isospectral flows based on finite integration methods( FIM) with radial basis functions( RBF) interpolation,a new algorithm is developed. Our method ensures the symmetry of the solutions. Numerical experiments demonstrate that the solutions have higher accuracy by our algorithm than by the second order Runge- Kutta( RK2) method.
Resumo:
Inspired by the relational algebra of data processing, this paper addresses the foundations of data analytical processing from a linear algebra perspective. The paper investigates, in particular, how aggregation operations such as cross tabulations and data cubes essential to quantitative analysis of data can be expressed solely in terms of matrix multiplication, transposition and the Khatri–Rao variant of the Kronecker product. The approach offers a basis for deriving an algebraic theory of data consolidation, handling the quantitative as well as qualitative sides of data science in a natural, elegant and typed way. It also shows potential for parallel analytical processing, as the parallelization theory of such matrix operations is well acknowledged.
Resumo:
Dissertação de mestrado integrado em Engenharia Civil
Resumo:
Objectives Discuss neuropsychiatric aspects and differential diagnosis of catatonic syndrome secondary to systemic lupus erythematosus (SLE) in a pediatric patient. Methods Single case report. Result A 13-year-old male, after two months diagnosed with SLE, started to present psychotic symptoms (behavioral changes, hallucinations and delusions) that evolved into intense catatonia. During hospitalization, neuroimaging, biochemical and serological tests for differential diagnosis with metabolic encephalopathy, neurological tumors and neuroinfections, among other tests, were performed. The possibility of neuroleptic malignant syndrome, steroid-induced psychosis and catatonia was also evaluated. A complete reversal of catatonia was achieved after using benzodiazepines in high doses, associated with immunosuppressive therapy for lupus, which speaks in favor of catatonia secondary to autoimmune encephalitis due to lupus. Conclusion Although catatonia rarely is the initial clinical presentation of SLE, the delay in recognizing the syndrome can be risky, having a negative impact on prognosis. Benzodiazepines have an important role in the catatonia resolution, especially when associated with parallel specific organic base cause treatment. The use of neuroleptics should be avoided for the duration of the catatonic syndrome as it may cause clinical deterioration.
Resumo:
The use of genome-scale metabolic models has been rapidly increasing in fields such as metabolic engineering. An important part of a metabolic model is the biomass equation since this reaction will ultimately determine the predictive capacity of the model in terms of essentiality and flux distributions. Thus, in order to obtain a reliable metabolic model the biomass precursors and their coefficients must be as precise as possible. Ideally, determination of the biomass composition would be performed experimentally, but when no experimental data are available this is established by approximation to closely related organisms. Computational methods however, can extract some information from the genome such as amino acid and nucleotide compositions. The main objectives of this study were to compare the biomass composition of several organisms and to evaluate how biomass precursor coefficients affected the predictability of several genome-scale metabolic models by comparing predictions with experimental data in literature. For that, the biomass macromolecular composition was experimentally determined and the amino acid composition was both experimentally and computationally estimated for several organisms. Sensitivity analysis studies were also performed with the Escherichia coli iAF1260 metabolic model concerning specific growth rates and flux distributions. The results obtained suggest that the macromolecular composition is conserved among related organisms. Contrasting, experimental data for amino acid composition seem to have no similarities for related organisms. It was also observed that the impact of macromolecular composition on specific growth rates and flux distributions is larger than the impact of amino acid composition, even when data from closely related organisms are used.
Resumo:
"Series title: Springerbriefs in applied sciences and technology, ISSN 2191-530X"
Resumo:
"Series title: Springerbriefs in applied sciences and technology, ISSN 2191-530X"
Resumo:
Under the framework of constraint based modeling, genome-scale metabolic models (GSMMs) have been used for several tasks, such as metabolic engineering and phenotype prediction. More recently, their application in health related research has spanned drug discovery, biomarker identification and host-pathogen interactions, targeting diseases such as cancer, Alzheimer, obesity or diabetes. In the last years, the development of novel techniques for genome sequencing and other high-throughput methods, together with advances in Bioinformatics, allowed the reconstruction of GSMMs for human cells. Considering the diversity of cell types and tissues present in the human body, it is imperative to develop tissue-specific metabolic models. Methods to automatically generate these models, based on generic human metabolic models and a plethora of omics data, have been proposed. However, their results have not yet been adequately and critically evaluated and compared. This work presents a survey of the most important tissue or cell type specific metabolic model reconstruction methods, which use literature, transcriptomics, proteomics and metabolomics data, together with a global template model. As a case study, we analyzed the consistency between several omics data sources and reconstructed distinct metabolic models of hepatocytes using different methods and data sources as inputs. The results show that omics data sources have a poor overlapping and, in some cases, are even contradictory. Additionally, the hepatocyte metabolic models generated are in many cases not able to perform metabolic functions known to be present in the liver tissue. We conclude that reliable methods for a priori omics data integration are required to support the reconstruction of complex models of human cells.
Resumo:
Dissertação de mestrado em Sociologia (área de especialização em Organizações e Trabalho)