1000 resultados para PREGNANT RATS
Resumo:
Atrial mechanoreceptors, sensitive to stretch, contribute in regulating heart rate and intravascular volume. The information from those receptors reaches the nucleus tractus solitarius and then the paraventricular nucleus (PVN), known to have a crucial role in the regulation of cardiovascular function. Neurons in the PVN synthesize CRF, AVP, and oxytocin (OT). Stimulation of atrial mechanoreceptors was performed in awake rats implanted with a balloon at the junction of the superior vena cava and right atrium. Plasma ACTH, AVP, and OT concentrations and Fos, CRF, AVP, and OT immunolabeling in the PVN were determined after balloon inflation in hydrated and water-deprived rats. The distension of the balloon increased the plasma ACTH concentrations, which were higher in water-deprived than in hydrated rats (P < 0.05). In addition, the distension in the water-deprived group decreased plasma AVP concentrations (P < 0.05), compared with the respective control group. The distension increased the number of Fos- and double-labeled Fos/CRF neurons in the parvocellular PVN, which was higher in the water-deprived than in the hydrated group (P < 0.01). There was no difference in the Fos expression in magnocellular PVN neurons after distension in hydrated and water-deprived groups, compared with respective controls. In conclusion, parvocellular CRF neurons showed an increase of Fos expression induced by stimulation of right atrial mechanoreceptors, suggesting that CRF participates in the cardiovascular reflex adjustments elicited by volume loading. Activation of CRF neurons in the PVN by cardiovascular reflex is affected by osmotic stimulation.
Resumo:
Several lines of evidence suggest that angiotensin II (A-II) participates in the postnatal development of the kidney in rats. Many effects of A-II are mediated by mitogen-activated protein kinase (MAPK) pathways. This study investigated the influence that treatment with losartan during lactation has on MAPKs and on A-II receptor types 1 (AT(1)) and 2 (AT(2)) expression in the renal cortices of the offspring of dams exposed to losartan during lactation. In addition, we evaluated the relationship between such expression and changes in renal function and structure. Rat pups from dams receiving 2% sucrose or losartan diluted in 2% sucrose (40 mg/dl) during lactation were killed 30 days after birth, and the kidneys were removed for histological, immunohistochemical, and Western blot analysis. AT(1) and AT(2) receptors and p-p38, c-Jun N-terminal kinases (p-JNK) and extracellular signal-regulated protein kinases (p-ERK) expression were evaluated using Western blot analysis. The study-group rats presented an increase in AT(2) receptor and MAPK expression. In addition, these rats also presented lower glomerular filtration rate (GFR), greater albuminuria, and changes in renal structure. In conclusion, newborn rats from dams exposed to losartan during lactation presented changes in renal structure and function, which were associated with AT(2) receptor and MAPK expression in the kidneys.
Resumo:
Chronic intermittent hypoxia (CIH) in rats produces changes in the central regulation of cardiovascular and respiratory systems by unknown mechanisms. We hypothesized that CIH (6% O(2) for 40 s, every 9 min, 8 h day(-1)) for 10 days alters the central respiratory modulation of sympathetic activity. After CIH, awake rats (n = 14) exhibited higher levels of mean arterial pressure than controls (101 +/- 3 versus 89 +/- 3 mmHg, n = 15, P < 0.01). Recordings of phrenic, thoracic sympathetic, cervical vagus and abdominal nerves were performed in the in situ working heart-brainstem preparations of control and CIH juvenile rats. The data obtained in CIH rats revealed that: (i) abdominal (Abd) nerves exhibited an additional burst discharge in late expiration; (ii) thoracic sympathetic nerve activity (tSNA) was greater during late expiration than in controls (52 +/- 5 versus 40 +/- 3%; n = 11, P < 0.05; values expressed according to the maximal activity observed during inspiration and the noise level recorded at the end of each experiment), which was not dependent on peripheral chemoreceptors; (iii) the additional late expiratory activity in the Abd nerve correlated with the increased tSNA; (iv) the enhanced late expiratory activity in the Abd nerve unique to CIH rats was accompanied by reduced post-inspiratory activity in cervical vagus nerve compared to controls. The data indicate that CIH rats present an altered pattern of central sympathetic-respiratory coupling, with increased tSNA that correlates with enhanced late expiratory discharge in the Abd nerve. Thus, CIH alters the coupling between the central respiratory generator and sympathetic networks that may contribute to the induced hypertension in this experimental model.
Resumo:
1. The present study evaluated changes in autonomic control of the cardiovascular system in conscious rats following blockade of endothelin (ET) receptors with bosentan. 2. Rats were treated with bosentan or vehicle (5% gum arabic) for 7 days by gavage. 3. Baseline heart rate (HR) was higher in the bosentan-treated group compared with the control group (418 +/- 5 vs 357 +/- 4 b.p.m., respectively; P < 0.001). This baseline tachycardia was associated with a lower baroreflex sensitivity of the bradycardiac and tachycardiac responses in the bosentan-treated group compared with the control group. Sequential blockade of the parasympathetic and sympathetic autonomic nervous system with methylatropine and propranolol showed a higher intrinsic HR in the bosentan-treated group compared with the control group (411 +/- 5 vs 381 +/- 4 b.p.m., respectively; P < 0.05). This was accompanied by a higher cardiac sympathetic tone (31 +/- 1 vs 13 +/- 1%, respectively; P < 0.01) and a lower vagal parasympathetic tone (69 +/- 2 vs 87 +/- 2%, respectively; P < 0.01) in the bosentan-treated group compared with the control group. Variance and high-frequency oscillations of pulse interval (PI) variability in absolute and normalized units were lower in the bosentan-treated group than in the control group. Conversely, low-frequency (LF) oscillations of PI variability in absolute and normalized units, as well as variance and LF oscillations of systolic arterial pressure variability, were greater in the bosentan-treated group than the control group. 4. Overall, the data indicate an increased cardiac sympathetic drive, as well as lower vagal parasympathetic activity and baroreflex sensitivity, in conscious rats after chronic blockade of ET receptors with bosentan.
Resumo:
Successful reproduction requires that changes in plasma follicle-stimulating hormone (FSH), luteinizing hormone (LH), prolactin (PRL), oxytocin (OT), estrogen (E-2) and progesterone (P-4) occur together with the display of maternal behaviors. Ovarian steroids and environmental stimuli can affect the dendritic spines in the rat hippocampus. Here, studying Wistar rats, it is described: (a) the sequential and concomitant changes in the hormonal profile of females at postpartum days (PP) 4, 8, 12, 16, 20 and 24, comparing to estrous cycle referential values; (b) the dendritic spine density in the stratum radiatum of CA1 (CA1-SR) Golgi-impregnated neurons in virgin females across the estrous cycle and in multiparous age-matched ones; and (c) the proportion of different types of spines in the CAI-SR of virgin and postpartum females, both in diestrus. Plasma levels of gonadotrophins and ovarian hormones remained low along PP while LH increased and PRL decreased near the end of the lactating period. The lowest dendritic spine density was found in virgin females in estrus when compared to diestrus and proestrus phases or to postpartum females in diestrus (p < 0.03). Other comparisons among groups were not statistically significant (p > 0.4). There were no differences in the proportions of the different spine types in nulliparous and postpartum females (p > 0.2). Results suggest that medium layer CA1-SR spines undergo rapid modifications in Wistar females across the estrous cycle (not quite comparable to Sprague-Dawley data or to hormonal substitutive therapy following ovariectomy), but persistent effects of motherhood on dendritic spine density and morphology were not found in this area. (c) 2008 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Microinjection of the cholinergic agonist carbachol into the bed nucleus of the stria terminalis (BST) has been reported to cause pressor response in unanesthetized rats, which was shown to be mediated by an acute release of vasopressin into the systemic circulation and followed by baroreflex-mediated bradycardia. In the present study, we tested the possible involvement of the hypothalamic paraventricular (PVN) and supraoptic (SON) nuclei in the pressor response evoked by carbachol microinjection into the BST of unanesthetized rats. For this, cardiovascular responses following carbachol (1 nmol/100 nL) microinjection into the BST were studied before and after PVN or SON pretreatment, either ipsilateral or contralateral in relation to BST microinjection site, with the nonselective neurotransmission blocker cobalt chloride (CoCl(2), 1 mM/100 nL). Carbachol microinjection into the BST evoked pressor response. Moreover, BST treatment with carbachol significantly increased plasma vasopressin levels, thus confirming previous evidences that carbachol microinjection into the BST evokes pressor response due to vasopressin release into the circulation. SON pretreatment with CoCl(2), either ipsilateral or contralateral in relation to BST microinjection site, inhibited the pressor response to carbachol microinjection into the BST. However, CoCl(2) microinjection into the ipsilateral or contralateral PVN did not affect carbachol-evoked pressor response. In conclusion, our results suggest that pressor response to carbachol microinjection into the BST is mediated by SON magnocellular neurons, without significant involvement of those in the PVN. The results also indicate that responses to carbachol microinjection into the BST are mediated by a neural pathway that depends on the activation of both ipsilateral and contralateral SON. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
In the present study we evaluated the role of ionotropic glutamate receptors and purinergic P2 receptors in the caudal commissural NTS (cNTS) on the modulation of the baseline respiratory frequency (fR), and on the tachypneic response to chemoreflex activation in awake rats. The selective antagonism of ionotropic glutamate receptors with kynurenic acid (2 nmol/50 nl) in the cNTS produced a significant increase in the baseline fR but no changes in the tachypneic response to chemoreflex activation. The selective antagonism of purinergic P2 receptors by PPADS (0.25 nmol/50 nl) in the cNTS produced no changes in the baseline fR or in the tachypneic response to chemoreflex activation. The data indicate that glutamate acting on ionotropic receptors in the cNTS plays a inhibitory role on the modulation of the baseline fR but had no effect on the tachypneic response to chemoreflex activation, while ATP acting on P2 receptors in the cNTS plays no major role in the modulation of the baseline fR or in the tachypneic response to chemoreflex activation. We suggest that neurotransmitters other than L-glutamate and ATP are involved in the processing of the tachypneic response of the chemoreflex at the cNTS level. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The vagus nerve is an important component of the efferent arm of the baroreflex. Blood pressure levels as well as baroreflex control of circulation are significantly different in male and female spontaneously hypertensive rats (SHR). We proposed to investigate the morphometric differences between genders using the vagus nerve of SHR. Adult animals (20 weeks old) were anesthetized and had their arterial pressure (AP) and heart rate (HR) recorded by a computerized system. The rats were then systemically perfused with a fixative solution and had their cervical vagi nerves prepared for light microscopy. Proximal and distal segments of the left and right vagi nerves were evaluated for morphometric parameters including fascicle area and diameter, myelinated fiber number, density, area and diameter. Comparisons were made between sides and segments on the same gender as well as between genders. Differences were considered significant when p<0.05. Male SHR had significantly higher AP and HR. Morphometric data showed no differences between the same levels of both sides and between segments on the same side for male and female rats. In addition, no significant morphometric differences were observed when genders were compared. This is the first description of vagus nerve morphometry in SHR indicating that gender differences in AP and HR cannot be attributed to dissimilarities in vagal innervation of the heart. These data provide a morphological basis for further studies involving functional investigations of the efferent arm of the baroreflex in hypertension. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Adult rats submitted to perinatal salt overload presented renin-angiotensin system (RAS) functional disturbances. The RAS contributes to the renal development and renal damage in a 5/6 nephrectomy model. The aim of the present study was to analyze the renal structure and function of offspring from dams that received a high-salt intake during pregnancy and lactation. We also evaluated the influence of the prenatal high-salt intake on the evolution of 5/6 nephrectomy in adult rats. A total of 111 sixty-day-old rat pups from dams that received saline or water during pregnancy and lactation were submitted to 5/6 nephrectomy (nephrectomized) or to a sham operation (sham). The animals were killed 120 days after surgery, and the kidneys were removed for immunohistochemical and histological analysis. Systolic blood pressure (SBP), albuminuria, and glomerular filtration rate (GFR) were evaluated. Increased SBP, albuminuria, and decreased GFR were observed in the rats from dams submitted to high-sodium intake before surgery. However, there was no difference in these parameters between the groups after the 5/6 nephrectomy. The scores for tubulointerstitial lesions and glomerulosclerosis were higher in the rats from the sham saline group compared to the same age control rats, but there was no difference in the histological findings between the groups of nephrectomized rats. In conclusion, our data showed that the high-salt intake during pregnancy and lactation in rats leads to structural changes in the kidney of adult offspring. However, the progression of the renal lesions after 5/6 nephrectomy was similar in both groups.
Resumo:
The objective of the present study was to evaluate the sexual function of pregnant women and to identify the potential variables associated with it. The study was conducted on 137 low-risk, sexually active pregnant women who filled out the Female Sexual Function Index (FSFI) questionnaire. Although 61% of the women assessed presented an FSFI score 26.5, they declared that they were satisfied with the emotional proximity to their partner, with their relationship, and with their sex life. A positive association was detected between sexual dysfunction and gestational age and a report of urinary incontinence and excessive weight gain in the current pregnancy.
Resumo:
Fentanyl is used in obstetrical practice to promote analgesia and anesthesia during labor and in cesarean delivery, with rapid and short-term effects. To determine fentanyl concentrations in maternal plasma, in the placental intervillous space, and in the umbilical artery and vein in term pregnant women. Ten healthy pregnant women underwent epidural anesthesia with fentanyl plus bupivacaine and lidocaine, and fentanyl concentrations were determined in the various maternal and fetal compartments, including the placental intervillous space, which has not been previously studied in the literature. The ratios of fentanyl concentrations in the various maternal and fetal compartments revealed an 86% rate of placental fentanyl transfer. The highest fentanyl concentrations were detected in the placental intervillous space, being 2.19 times higher than in maternal plasma, 2.8 times higher than in the umbilical vein and 3.6 times higher than in the umbilical artery, with no significant differences between the umbilical vein and artery, demonstrating that there was no drug uptake by fetal tissues nor metabolism of the drug by the fetus despite the high rates of placental transfer. The present study demonstrated that the placental intervillous space acted as a site of fentanyl deposit, a fact that may be explained by two hypotheses: (1) the blood collected from the placental intervillous space is arterial and, according to some investigators, the arterial plasma concentrations of the drugs administered to patients undergoing epidural anesthesia are higher than the venous concentrations, and (2) a possible role of P-glycoprotein (P-gp).
Resumo:
The objective of the present study was to evaluate fetal biometry, Doppler values, and perinatal outcomes in pregnant women with antiphospholipid syndrome treated with acetylsalicylic acid and heparin. Twenty-five pregnant women with antiphospholipid syndrome using 100 mg/day acetylsalicylic acid and 5,000 IU heparin every 12 h were evaluated in this prospective observational study. Ultrasonography was performed between 24 and 38 weeks of gestational age to assess estimated fetal weight, placental thickness, amniotic fluid index, fetal biophysical profile and Doppler evaluation of maternal uterine arteries, and fetal middle cerebral and umbilical arteries. Data regarding Apgar score, gender, delivery mode, and birth weight and length were recorded after birth. The observed values for ultrasonographic assessment and perinatal outcomes were not very different from the expected values for normal pregnancies. The birth weight was 2863.3 +/- A 737.7 g (mean +/- A SD) and length was 46.8 +/- A 4.2 cm. Only one newborn (4%) had the 1-min Apgar score < 7 and all had the 5-min Apgar score > 7. Gestational and perinatal evaluation of pregnant women with antiphospholipid syndrome using both acetylsalicylic acid and heparin was reassuring.
Resumo:
Background Peridural blockade with lidocaine, bupivacaine, and fentanyl is an anesthetic procedure extensively used in obstetrics, justifying the pharmacokinetic study of these drugs during labor. Objective To investigate the influence of the physiopathological changes of gestational diabetes mellitus (GDM) on the pharmacokinetics of lidocaine and its metabolite monoethylglycinexylidide (MEGX) in pregnant women subjected to peridural anesthesia. Patients and methods Ten normal pregnant women (group 1) and six pregnant women with GDM (group 2) were studied, all of them at term. The patients received 200 mg 2% lidocaine hydrochloride without a vasoconstrictor by the peridural locoregional route. Maternal blood samples were collected at predetermined times for the analysis of lidocaine and MEGX by chromatography and pharmacokinetic analysis. Results The median pharmacokinetic parameters of lidocaine for groups 1 and 2 (P <= 0.05), respectively, were as follows: for Cmax 879.11 and 1,145.58 ng/ml, AUC(0-infinity) 256.01 and 455.95 wg min(-1) ml(-1), Cl/f/kg 10.61 and 5.64 ml min(-1) kg(-1), and Vd/f/kg 3.26 and 2.19 L/kg. The median pharmacokinetic parameters of MEGX for groups 1 and 2 (P <= 0.05), respectively, were as follows: for Cmax 82.71 and 141.38 ng/ml, Tmax 44.71 and 193.14 min, t(1/2)alpha 7.64 and 59.77 min, alpha 0.097 and 0.012/min, and AUC(0-infinity) 29.91 and 108.23 mu g min(-1) ml(-1). Conclusion The present data permit us to conclude that the apparent clearance of lidocaine and MEGX was reduced in diabetic patients compared to normal women, suggesting that GDM inhibits the CYP1A2/CYP3A4 isoforms responsible for the metabolism of this drug and its metabolite.
Resumo:
The aim of this study is to determine the concentrations of lidocaine and its metabolite, monoethylglycine xylidide (MEGX), and of the enantiomers of bupivacaine in maternal and fetal compartments. Ten healthy pregnant women were submitted to epidural anesthesia. Drug concentrations were determined in the maternal vein, fetal umbilical artery and vein, and the placental intervillous space. The highest concentrations of the bupivacaine enantiomers lidocaine and of lidocaine and of its MEGX metabolite were detected in maternal plasma and in the placental intervillous space. The placental transfer was 33% for the (+)-(R)-bupivacaine enantiomer and 31% for the (-)-(S)-bupivacaine enantiomer. For lidocaine and its MEGX metabolite, respective placental transfers were 60% and 43%. Lidocaine concentration in the fetal umbilical vein was 1.46 times higher than in the fetal umbilical artery. The highest concentrations of lidocaine and its metabolite and of the enantiomers of bupivacaine were detected in the placental intervillous space. The higher lidocaine concentrations in the fetal umbilical vein than in the fetal umbilical artery suggest that there was tissue uptake of the drug or drug metabolization by the fetus.
Resumo:
The aim of this study was to evaluate and compare the efficacy of different remobilization protocols in different skeletal muscles considering the changes induced by hindlimb suspension of the tail. Thirty-six female Wistar rats were divided into six groups: control I, control II, suspended, suspended free, suspended trained on a declined treadmill and suspended trained on a flat treadmill. Fragments of soleus and tibialis anterior (TA) muscle were frozen and processed by different histochemical methods. The suspended soleus showed a significant increase in the proportional number of intermediate/hybrid fibers and a decrease in the number of type I fibers. Some of these changes proved to be reversible after remobilization. The three remobilization programs led to the recovery of both the proportional number of fibers and their size. The TA muscle presented a significant increase in the number and size of type I fibers and a cell size reduction of type IIB fibers, which were recovered after training on a declined treadmill and free movement. Especially regarding the soleus, the present findings indicate that, among the protocols, training on a declined treadmill was found to induce changes of a more regenerative nature, seemingly indicating a better tissue restructuring after the suspension procedure.