920 resultados para POTENTIAL ENERGY SURFACES
Resumo:
[Excerpt] Anaerobic microbial diversity encloses a very high potential that can be used for biotechnological applications. This potential is still largely unexplored, since the majority of the microorganisms in Nature are unknown or poorly characterized. This work is focused on the study of novel anaerobic microorganisms that participate in the metabolism of lipids, long chain fatty acids (LCFA) and glycerol, with the main goal of producing valuable energy-rich organic compounds. For that, conventional anaerobic culturing procedures were combined with continuous bioreactors operation and allied to microbial ecology approaches. Two main examples of the work performed will be presented. (...)
Resumo:
Dissertação de mestrado em Bioquímica (área de especialização em Biomedicina)
Resumo:
Tese de Doutoramento em Engenharia Civil.
Resumo:
The adoption of a sustainable approach to meeting the energy needs of society has recently taken on a more central and urgent place in the minds of many people. There are many reasons for this including ecological, environmental and economic concerns. One particular area where a sustainable approach has become very relevant is in the production of electricity. The contribution of renewable sources to the energy mix supplying the electricity grid is nothing new, but the focus has begun to move away from the more conventional renewable sources such as wind and hydro. The necessity of exploring new and innovative sources of renewable energy is now seen as imperative as the older forms (i.e. hydro) reach the saturation point of their possible exploitation. One such innovative source of energy currently beginning to be utilised in this regard is tidal energy. The purpose of this thesis is to isolate one specific drawback to tidal energy, which could be considered a roadblock to this energy source being a major contributor to the Irish national grid. This drawback presents itself in the inconsistent nature in which a tidal device generates energy over the course of a 24 hour period. This inconsistency of supply can result in the cycling of conventional power plants in order to even out the supply, subsequently leading to additional costs. The thesis includes a review of literature relevant to the area of tidal and other marine energy sources with an emphasis on the state of the art devices currently in development or production. The research carried out included tidal data analysis and manipulation into a model of the power generating potential at specific sites. A solution is then proposed to the drawback of inconsistency of supply, which involves the positioning of various tidal generation installations at specifically selected locations around the Irish coast. The temporal shift achieved in the power supply profiles of the individual sites by locating the installations in the correct locations, successfully produced an overall power supply profile with the smoother curve and a consistent base load energy supply. Some limitations to the method employed were also outlined, and suggestions for further improvements to the method were made.
Resumo:
The contribution of secretory immunoglobulin A (SIgA) antibodies in the defense of mucosal epithelia plays an important role in preventing pathogen adhesion to host cells, therefore blocking dissemination and further infection. This mechanism, referred to as immune exclusion, represents the dominant mode of action of the antibody. However, SIgA antibodies combine multiple facets, which together confer properties extending from intracellular and serosal neutralization of antigens, activation of non-inflammatory pathways and homeostatic control of the endogenous microbiota. The sum of these features suggests that future opportunities for translational application from research-based knowledge to clinics include the mucosal delivery of bioactive antibodies capable of preserving immunoreactivity in the lung, gastrointestinal tract, the genito-urinary tract for the treatment of infections. This article covers topics dealing with the structure of SIgA, the dissection of its mode of action in epithelia lining different mucosal surfaces and its potential in immunotherapy against infectious pathogens.
Resumo:
As demand for electricity from renewable energy sources grows, there is increasing interest, and public and financial support, for local communities to become involved in the development of renewable energy projects. In the UK, “Community Benefit” payments are the most common financial link between renewable energy projects and local communities. These are “goodwill” payments from the project developer for the community to spend as it wishes. However, if an ownership stake in the renewable energy project were possible, receipts to the local community would potentially be considerably higher. The local economic impacts of these receipts are difficult to quantify using traditional Input-Output techniques, but can be more appropriately handled within a Social Accounting Matrix (SAM) framework where income flows between agents can be traced in detail. We use a SAM for the Shetland Islands to evaluate the potential local economic and employment impact of a large onshore wind energy project proposed for the Islands. Sensitivity analysis is used to show how the local impact varies with: the level of Community Benefit payments; the portion of intermediate inputs being sourced from within the local economy; and the level of any local community ownership of the project. By a substantial margin, local ownership confers the greatest economic impacts for the local community.
Resumo:
We combined biophysical, biochemical, and pharmacological approaches to investigate the ability of the alpha 1a- and alpha 1b-adrenergic receptor (AR) subtypes to form homo- and hetero-oligomers. Receptors tagged with different epitopes (hemagglutinin and Myc) or fluorescent proteins (cyan and green fluorescent proteins) were transiently expressed in HEK-293 cells either individually or in different combinations. Fluorescence resonance energy transfer measurements provided evidence that both the alpha 1a- and alpha 1b-AR can form homo-oligomers with similar transfer efficiency of approximately 0.10. Hetero-oligomers could also be observed between the alpha 1b- and the alpha 1a-AR subtypes but not between the alpha 1b-AR and the beta2-AR, the NK1 tachykinin, or the CCR5 chemokine receptors. Oligomerization of the alpha 1b-AR did not require the integrity of its C-tail, of two glycophorin motifs, or of the N-linked glycosylation sites at its N terminus. In contrast, helix I and, to a lesser extent, helix VII were found to play a role in the alpha 1b-AR homo-oligomerization. Receptor oligomerization was not influenced by the agonist epinephrine or by the inverse agonist prazosin. A constitutively active (A293E) as well as a signaling-deficient (R143E) mutant displayed oligomerization features similar to those of the wild type alpha 1b-AR. Confocal imaging revealed that oligomerization of the alpha1-AR subtypes correlated with their ability to co-internalize upon exposure to the agonist. The alpha 1a-selective agonist oxymetazoline induced the co-internalization of the alpha 1a- and alpha 1b-AR, whereas the alpha 1b-AR could not co-internalize with the NK1 tachykinin or CCR5 chemokine receptors. Oligomerization might therefore represent an additional mechanism regulating the physiological responses mediated by the alpha 1a- and alpha 1b-AR subtypes.
Resumo:
One aspect of the case for policy support for renewable energy developments is the wider economic benefits that are expected to be generated. Within Scotland, as with other regions of the UK, there is a focus on encouraging domestically‐based renewable technologies. In this paper, we use a regional computable general equilibrium framework to model the impact on the Scottish economy of expenditures relating to marine energy installations. The results illustrate the potential for (considerable) ‘legacy’ effects after expenditures cease. In identifying the specific sectoral expenditures with the largest impact on (lifetime) regional employment, this approach offers important policy guidance.
Resumo:
One aspect of the case for policy support for renewable energy developments is the wider economic benefits that are expected to be generated. Within Scotland, as with other regions of the UK, there is a focus on encouraging domestically‐based renewable technologies. In this paper, we use a regional computable general equilibrium framework to model the impact on the Scottish economy of expenditures relating to marine energy installations. The results illustrate the potential for (considerable) ‘legacy’ effects after expenditures cease. In identifying the specific sectoral expenditures with the largest impact on (lifetime) regional employment, this approach offers important policy guidance.
Resumo:
Background: The modulation of energetic homeostasis by pollutants has recently emerged as a potential contributor to the onset of metabolic disorders. Diethylhexyl phthalate (DEHP) is a widely used industrial plasticizer to which humans are widely exposed. Phthalates can activate the three peroxisome proliferatoractivated receptor (PPAR) isotypes on cellular models and induce peroxisome proliferation in rodents.Objectives: In this study, we aimed to evaluate the systemic and metabolic consequences of DEHP exposure that have remained so far unexplored and to characterize the underlying molecular mechanisms of action.Methods: As a proof of concept and mechanism, genetically engineered mouse models of PPARs were exposed to high doses of DEHP, followed by metabolic and molecular analyses.Results: DEHP-treated mice were protected from diet-induced obesity via PPARalpha-dependent activation of hepatic fatty acid catabolism, whereas the activity of neither PPARbeta nor PPARgamma was affected. However, the lean phenotype observed in response to DEHP in wild-type mice was surprisingly abolished in PPARalpha-humanized mice. These species differences are associated with a different pattern of coregulator recruitment.Conclusion: These results demonstrate that DEHP exerts species-specific metabolic actions that rely to a large extent on PPARalpha signaling and highlight the metabolic importance of the species-specific activation of PPARalpha by xenobiotic compounds. Editor's SummaryDiethylhexyl phthalate (DEHP) is an industrial plasticizer used in cosmetics, medical devices, food packaging, and other applications. Evidence that DEHP metabolites can activate peroxisome proliferatoractivated receptors (PPARs) involved in fatty acid oxidation (PPARalpha and PPARbeta) and adiposite function and insulin resistance (PPARgamma) has raised concerns about potential effects of DEHP on metabolic homeostasis. In rodents, PPARalpha activation also induces hepatic peroxisome proliferation, but this response to PPARalpha activation is not observed in humans. Feige et al. (p. 234) evaluated systemic and metabolic consequences of high-dose oral DEHP in combination with a high-fat diet in wild-type mice and genetically engineered mouse PPAR models. The authors report that mice exposed to DEHP gained less weight than controls, without modifying their feeding behavior; they also exhibited lower triglyceride levels, smaller adipocytes, and improved glucose tolerance compared with controls. These effects, which were observed in mice fed both high-fat and standard diets, appeared to be mediated by PPARalpha-dependent activation of hepatic fatty acid catabolism without apparent involvement of PPARbeta or PPARgamma. However, mouse models that expressed human (versus mouse) PPARalpha tended to gain more weight on a high-fat diet than their DHEP-unexposed counterparts. The authors conclude that findings support species-specific metabolic effects of DEHP mediated by PPARalpha activation.
Resumo:
Malnutrition is common in critically ill, hospitalized patients and so represents a major problem for intensive care. Nutritional support can be beneficial in such cases and may help preserve vital organ and immune function. Energy requirements, route of delivery and potential complications of nutritional support are discussed in this paper.
Resumo:
Bacteria can survive on hospital textiles and surfaces, from which they can be disseminated, representing a source of health care-associated infections (HCAIs). Surfaces containing copper (Cu), which is known for its bactericidal properties, could be an efficient way to lower the burden of potential pathogens. The antimicrobial activity of Cu-sputtered polyester surfaces, obtained by direct-current magnetron sputtering (DCMS), against methicillin-resistant Staphylococcus aureus (MRSA) was tested. The Cu-polyester microstructure was characterized by high-resolution transmission electron microscopy to determine the microstructure of the Cu nanoparticles and by profilometry to assess the thickness of the layers. Sputtering at 300 mA for 160 s led to a Cu film thickness of 20 nm (100 Cu layers) containing 0.209% (wt/wt) polyester. The viability of MRSA strain ATCC 43300 on Cu-sputtered polyester was evaluated by four methods: (i) mechanical detachment, (ii) microcalorimetry, (iii) direct transfer onto plates, and (iv) stereomicroscopy. The low efficacy of mechanical detachment impeded bacterial viability estimations. Microcalorimetry provided only semiquantitative results. Direct transfer onto plates and stereomicroscopy seemed to be the most suitable methods to evaluate the bacterial inactivation potential of Cu-sputtered polyester surfaces, since they presented the least experimental bias. Cu-polyester samples sputtered for 160 s by DCMS were further tested against 10 clinical MRSA isolates and showed a high level of bactericidal activity, with a 4-log(10) reduction in the initial MRSA load (10(6) CFU) within 1 h. Cu-sputtered polyester surfaces might be of use to prevent the transmission of HCAI pathogens.
Resumo:
This study aimed to assess the microbiology of food and hand contact surfaces in the retail environment and the potential for these surfaces to act as vehicles for the spread of foodborne pathogens. During the survey, 10 stores in the Republic of Ireland (ROI) were visited by student Environmental Health Officers (EHOs) who took swab samples from four surfaces: conveyor belts, long-life shopping bags, shopping trolley handles and keypads on card payment units. The swab samples were examined for the presence of the pathogens Salmonella, Campylobacter and Listeria. The Aerobic Colony Counts, as well as the levels of E. coli and Enterobacteriaceae, were also determined. In addition, structured questionnaires were used with retailers to establish the stores’ regimes for the cleaning of conveyor belts. Similarly, shoppers donating their long-life shopping bags for sampling were questioned about how they normally use these bags, and the results were compared with those from the microbiological survey. The results indicated that the hygiene of the surfaces sampled was good, with Salmonella, Campylobacter and Listeria not detected in any of the samples, and levels of both Enterobacteriaceae and E. coli were below the limits of detection in all but one sample. Aerobic Colony Counts varied but none of the results obtained would be deemed ‘unacceptable’ or ‘unsatisfactory’ under guidelines for ready-to-eat foods
Resumo:
Substantial and compelling medical and public health evidence indicated that non-medical factors, such as home energy costs, profoundly influence child health and well-being. Child Health Impact Assessment offered an evidence- and experience-based method through which to evaluate the implications of policy, regulations, and legislation for children's health and well-being. Our Child Health Impact Assessment of home energy costs revealed that unaffordable home energy has important and preventable adverse consequences for children's health. The available evidence showed that unaffordable home energy has preventable, potential consequences on the health and well-being of the more than 400,000 Massachusetts children living in low-income households. Low-income families are caught in the gap between rising energy prices and available energy assistance. Energy assistance falls far short of the need, especially when there is a spike in energy prices, such as following Hurricane Katrina in 2005. In addition to the exceedingly high housing costs in Massachusetts, our climate means low-income families spend more of their income on home energy (energy burden) to keep warm than families in other regions of the U.S.
Resumo:
Protein energy wasting (PEW) is common in patients with chronic kidney disease (CKD) and is associated with adverse clinical outcomes, especially in individuals receiving maintenance dialysis therapy. A multitude of factors can affect the nutritional and metabolic status of CKD patients requiring a combination of therapeutic maneuvers to prevent or reverse protein and energy depletion. These include optimizing dietary nutrient intake, appropriate treatment of metabolic disturbances such as metabolic acidosis, systemic inflammation, and hormonal deficiencies, and prescribing optimized dialytic regimens. In patients where oral dietary intake from regular meals cannot maintain adequate nutritional status, nutritional supplementation, administered orally, enterally, or parenterally, is shown to be effective in replenishing protein and energy stores. In clinical practice, the advantages of oral nutritional supplements include proven efficacy, safety, and compliance. Anabolic strategies such as anabolic steroids, growth hormone, and exercise, in combination with nutritional supplementation or alone, have been shown to improve protein stores and represent potential additional approaches for the treatment of PEW. Appetite stimulants, anti-inflammatory interventions, and newer anabolic agents are emerging as novel therapies. While numerous epidemiological data suggest that an improvement in biomarkers of nutritional status is associated with improved survival, there are no large randomized clinical trials that have tested the effectiveness of nutritional interventions on mortality and morbidity.