939 resultados para Orthogonal GARCH
Resumo:
The use of orthonormal coordinates in the simplex and, particularly, balance coordinates, has suggested the use of a dendrogram for the exploratory analysis of compositional data. The dendrogram is based on a sequential binary partition of a compositional vector into groups of parts. At each step of a partition, one group of parts is divided into two new groups, and a balancing axis in the simplex between both groups is defined. The set of balancing axes constitutes an orthonormal basis, and the projections of the sample on them are orthogonal coordinates. They can be represented in a dendrogram-like graph showing: (a) the way of grouping parts of the compositional vector; (b) the explanatory role of each subcomposition generated in the partition process; (c) the decomposition of the total variance into balance components associated with each binary partition; (d) a box-plot of each balance. This representation is useful to help the interpretation of balance coordinates; to identify which are the most explanatory coordinates; and to describe the whole sample in a single diagram independently of the number of parts of the sample
Resumo:
In this paper, a new methodology for predicting fluid free surface shape using Model Order Reduction (MOR) is presented. Proper Orthogonal Decomposition combined with a linear interpolation procedure for its coefficient is applied to a problem involving bubble dynamics near to a free surface. A model is developed to accurately and efficiently capture the variation of the free surface shape with different bubble parameters. In addition, a systematic approach is developed within the MOR framework to find the best initial locations and pressures for a set of bubbles beneath the quiescent free surface such that the resultant free surface attained is close to a desired shape. Predictions of the free surface in two-dimensions and three-dimensions are presented.
Resumo:
Hydrogeological research usually includes some statistical studies devised to elucidate mean background state, characterise relationships among different hydrochemical parameters, and show the influence of human activities. These goals are achieved either by means of a statistical approach or by mixing models between end-members. Compositional data analysis has proved to be effective with the first approach, but there is no commonly accepted solution to the end-member problem in a compositional framework. We present here a possible solution based on factor analysis of compositions illustrated with a case study. We find two factors on the compositional bi-plot fitting two non-centered orthogonal axes to the most representative variables. Each one of these axes defines a subcomposition, grouping those variables that lay nearest to it. With each subcomposition a log-contrast is computed and rewritten as an equilibrium equation. These two factors can be interpreted as the isometric log-ratio coordinates (ilr) of three hidden components, that can be plotted in a ternary diagram. These hidden components might be interpreted as end-members. We have analysed 14 molarities in 31 sampling stations all along the Llobregat River and its tributaries, with a monthly measure during two years. We have obtained a bi-plot with a 57% of explained total variance, from which we have extracted two factors: factor G, reflecting geological background enhanced by potash mining; and factor A, essentially controlled by urban and/or farming wastewater. Graphical representation of these two factors allows us to identify three extreme samples, corresponding to pristine waters, potash mining influence and urban sewage influence. To confirm this, we have available analysis of diffused and widespread point sources identified in the area: springs, potash mining lixiviates, sewage, and fertilisers. Each one of these sources shows a clear link with one of the extreme samples, except fertilisers due to the heterogeneity of their composition. This approach is a useful tool to distinguish end-members, and characterise them, an issue generally difficult to solve. It is worth note that the end-member composition cannot be fully estimated but only characterised through log-ratio relationships among components. Moreover, the influence of each endmember in a given sample must be evaluated in relative terms of the other samples. These limitations are intrinsic to the relative nature of compositional data
Resumo:
A joint distribution of two discrete random variables with finite support can be displayed as a two way table of probabilities adding to one. Assume that this table has n rows and m columns and all probabilities are non-null. This kind of table can be seen as an element in the simplex of n · m parts. In this context, the marginals are identified as compositional amalgams, conditionals (rows or columns) as subcompositions. Also, simplicial perturbation appears as Bayes theorem. However, the Euclidean elements of the Aitchison geometry of the simplex can also be translated into the table of probabilities: subspaces, orthogonal projections, distances. Two important questions are addressed: a) given a table of probabilities, which is the nearest independent table to the initial one? b) which is the largest orthogonal projection of a row onto a column? or, equivalently, which is the information in a row explained by a column, thus explaining the interaction? To answer these questions three orthogonal decompositions are presented: (1) by columns and a row-wise geometric marginal, (2) by rows and a columnwise geometric marginal, (3) by independent two-way tables and fully dependent tables representing row-column interaction. An important result is that the nearest independent table is the product of the two (row and column)-wise geometric marginal tables. A corollary is that, in an independent table, the geometric marginals conform with the traditional (arithmetic) marginals. These decompositions can be compared with standard log-linear models. Key words: balance, compositional data, simplex, Aitchison geometry, composition, orthonormal basis, arithmetic and geometric marginals, amalgam, dependence measure, contingency table
Resumo:
Simpson's paradox, also known as amalgamation or aggregation paradox, appears when dealing with proportions. Proportions are by construction parts of a whole, which can be interpreted as compositions assuming they only carry relative information. The Aitchison inner product space structure of the simplex, the sample space of compositions, explains the appearance of the paradox, given that amalgamation is a nonlinear operation within that structure. Here we propose to use balances, which are specific elements of this structure, to analyse situations where the paradox might appear. With the proposed approach we obtain that the centre of the tables analysed is a natural way to compare them, which avoids by construction the possibility of a paradox. Key words: Aitchison geometry, geometric mean, orthogonal projection
Resumo:
En este trabajo examinamos si la teoría de expectativas con primas de liquidez constantes puede explicar la estructura temporal de los tipos de interés de pequeños vencimientos en el mercado interbancario de depósitos español, para datos mensuales desde 1977 hasta 1995. Utilizamos el contraste de Campbell y Shiller (1987) basado en un modelo VAR cointegrado. A partir de las estimaciones consistentes de dicho modelo obtenemos la magnitud y persistencia de los shocks a través de la simulación de la respuesta al impulso, y estimaciones eficientes de los parámetros modelizando la varianza condicional que es variable en el tiempo. En este sentido, se proponen varios esquemas de volatilidad que permiten plantear distintas aproximaciones de la incertidumbre en un entorno multiecuacional GARCH y que están basadas en el modelo de expectativas propuesto. La evidencia empírica muestra que se incumple la teoría de las expectativas, que existe una dinámica conjunta a corto plazo para los tipos de interés y el diferencial que está definida por un modelo VAR(4)-GARCH( 1,1)-BEKK (que está próximo a la integrabilidad en varianza), y que existen distintos factores de riesgo que afectan a las primas en los plazos estudiados
Resumo:
Este texto describe en detalle diversas metodologías que permiten calcular dos medidas utilizadas para cuantificar el riesgo de mercado asociado a un activo financiero: el valor en riesgo VAR y el Expected Shortfall (ES). Los métodos analizados se basan en técnicas estadísticas apropiadas para el caso de series financieras, como son los modelos ARIMA, GARCH y modelos basados en la teoría del valor extremo. Estas metodologías se aplican a las variaciones diarias de la tasa interbancaria de Colombia para el período comprendido entre 1995 y 2004. Los conceptos utilizados en este texto suponen que el lector esté familiarizado con algunos elementos básicos de estadística, series de tiempo y finanzas. Se trata, por tanto, de un texto escrito para estudiantes de economía y finanzas de últimos cursos de pregrado, maestría y para profesionales interesados en el tema.
Resumo:
We present Very Long Baseline Interferometry (VLBI) observations of the high mass X-ray binary LS I +61˚303, carried out with the European VLBI Network (EVN). Over the 11 hour observing run, performed ~10 days after a radio outburst, the radio source showed a constant flux density, which allowed sensitive imaging of the emission distribution. The structure in the map shows a clear extension to the southeast. Comparing our data with previous VLBI observations we interpret the extension as a collimated radio jet as found in several other X-ray binaries. Assuming that the structure is the result of an expansion that started at the onset of the outburst, we derive an apparent expansion velocity of 0:003 c, which, in the context of Doppler boosting, corresponds to an intrinsic velocity of at least 0:4 c for an ejection close to the line of sight. From the apparent velocity in all available epochs we are able to establish variations in the ejection angle which imply a precessing accretion disk. Finally we point out that LS I +61˚303, like SS 433 and Cygnus X-1, shows evidence for an emission region almost orthogonal to the relativistic jet
Resumo:
Este trabajo se concentra en el estudio de los mecanismos de transmisión de información entre las volatilidades del diferencial de tasas de interés de Colombia y Estados Unidos tanto en el corto como en el largo plazo y la tasa de cambio usando tres diferentes tipos de modelos GARCH multivariados, encontrando que hay evidencia de spillovers de volatilidad de los diferenciales de tasas de interés hacia la tasa de cambio, que esta transmisión de información persiste en el tiempo y que los choques exógenos a estos mercados no tienen carácter asimétrico.
Resumo:
Exercises and solutions in PDF
Resumo:
Exercises and solutions in LaTex
Resumo:
Exercises and solutions in PDF
Resumo:
Exercises and solutions in LaTex
Resumo:
La dependencia entre las series financieras, es un parámetro fundamental para la estimación de modelos de Riesgo. El Valor en Riesgo (VaR) es una de las medidas más importantes utilizadas para la administración y gestión de Riesgos Financieros, en la actualidad existen diferentes métodos para su estimación, como el método por simulación histórica, el cual no asume ninguna distribución sobre los retornos de los factores de riesgo o activos, o los métodos paramétricos que asumen normalidad sobre las distribuciones. En este documento se introduce la teoría de cópulas, como medida de dependencia entre las series, se estima un modelo ARMA-GARCH-Cópula para el cálculo del Valor en Riesgo de un portafolio compuesto por dos series financiera, la tasa de cambio Dólar-Peso y Euro-Peso. Los resultados obtenidos muestran que la estimación del VaR por medio de copulas es más preciso en relación a los métodos tradicionales.
Resumo:
This paper analyzes the measure of systemic importance ∆CoV aR proposed by Adrian and Brunnermeier (2009, 2010) within the context of a similar class of risk measures used in the risk management literature. In addition, we develop a series of testing procedures, based on ∆CoV aR, to identify and rank the systemically important institutions. We stress the importance of statistical testing in interpreting the measure of systemic importance. An empirical application illustrates the testing procedures, using equity data for three European banks.