980 resultados para Nuclear science.
Resumo:
The purpose of this study was to describe the teaching and leadership experiences of a science teacher who, as head of department, was preparing to introduce changes in the science department of an independent school in response to the requirements of the new junior science syllabus in Queensland, Australia. This teacher consented to classroom observations and interviews with the researchers where his beliefs about teaching practice and change were explored. Other science teachers at the school also were interviewed about their reactions to the planned changes. Interpretive analysis of the data provides an account of the complex interactions, negotiations, compromises, concessions, and trade-offs faced by the teacher during a period of education reform. Perceived barriers existing within the school that impeded proposed change are identified
Resumo:
The investigation into the encapsulation of gold nanoparticles (AuNPs) by poly(methyl methacrylate) (PMMA) was undertaken. This was performed by three polymerisation techniques including: grafting PMMA synthesised by reversible addition-fragmentation chain transfer (RAFT) polymerisation to AuNPs, grafting PMMA synthesised by atom transfer radical polymerisation (ATRP) from the surface of functionalised AuNPs and by encapsulation of AuNPs within PMMA latexes produced through photo-initiated oil-in-water (o/w) miniemulsion polymerisation. The grafting of RAFT PMMA to AuNPs was performed by the addition of the RAFT functionalised PMMA to citrate stabilised AuNPs. This was conducted with a range of PMMA of varying molecular weight distribution (MWD) as either the dithioester or thiol end-group functionalities. The RAFT PMMA polymers were characterised by gel permeation chromatography (GPC), ultraviolet-visible (UV-vis), Fourier transform infrared-attenuated total reflectance (FTIR-ATR), Fourier transform Raman (FT-Raman) and proton nuclear magnetic resonance (1H NMR) spectroscopies. The attachment of PMMA to AuNPs showed a tendency for AuNPs to associate with the PMMA structures formed, though significant aggregation occurred. Interestingly, thiol functionalised end-group PMMA showed very little aggregation of AuNPs. The spherical polymer-AuNP structures did not vary in size with variations in PMMA MWD. The PMMA-AuNP structures were characterised using scanning electron microscopy (SEM), transition electron microscopy (TEM), energy dispersive X-ray analysis (EDAX) and UV-vis spectroscopy. The surface confined ATRP grafting of PMMA from initiator functionalised AuNPs was polymerised in both homogeneous and heterogeneous media. 11,11’- dithiobis[1-(2-bromo-2-methylpropionyloxy)undecane] (DSBr) was used as the surface-confined initiator and was synthesised in a three step procedure from mercaptoundecanol (MUD). All compounds were characterised by 1H NMR, FTIR-ATR and Raman spectroscopies. The grafting in homogeneous media resulted in amorphous PMMA with significant AuNP aggregation. Individually grafted AuNPs were difficult to separate and characterise, though SEM, TEM, EDAX and UV-vis spectroscopy was used. The heterogeneous polymerisation did not produce grafted AuNPs as characterised by SEM and EDAX. The encapsulation of AuNPs within PMMA latexes through the process of photoinitiated miniemulsion polymerisation was successfully achieved. Initially, photoinitiated miniemulsion polymerisation was conducted as a viable low temperature method of miniemulsion initiation. This proved successful producing a stable PMMA with good conversion efficiency and narrow particle size distribution (PSD). This is the first report of such a system. The photo-initiated technique was further optimised and AuNPs were included into the miniemulsion. AuNP encapsulation was very effective, producing reproducible AuNP encapsulated PMMA latexes. Again, this is the first reported case of this. The latexes were characterised by TEM, SEM, GPC, gravimetric analysis and dynamic light scattering (DLS).
Resumo:
In this paper you will be introduced to a number of principles which can be used to inform good teaching practice and rigorous curriculum design. Principles relate to: * Application of a common sequence of events for how learners learn; * Accommodating different learning styles; * Adopting a purposeful approach to teaching and learning; * Using assessment as a central driving force in the curriculum and as an organising structure leading to coherence of teaching and learning approach; and * The increasing emphasis that is being placed on the development of generic graduate competencies over and above discipline content knowledge. The principles are particularly significant in relation to adult learning. The paper will use three specific applications as illustrations to help you to learn how these principles can be applied. The illustrations are taken from a second year subject in supercomputing that uses scientific case studies. The subject has been developed (with support from Silicon Graphics Inc. and Intel) to be taught entirely via the Internet.
Resumo:
The focus of this study is the phenomenon of teams and teamwork. Currently the Professional Standards of Queensland’s teachers state that teams are critical to teachers’ work. This study uses a phenomenographic approach to investigate science teachers’ conceptions of teams and teamwork in the science departments of fifteen Queensland State secondary schools. The research identifies eight conceptions of teams and teamwork. The research findings suggest that the team represents a collective of science teachers bounded by the Science Department and their current timetabled subject. Collaboration was found in the study to be an activity that occurred between teachers in the same social space. The research recognises a new category of relationship between teachers, designated as ‘ask-and-receive’. The research identifies a lack of teamwork within the science department and the school. There appears to be no teaming with other subject departments. The research findings highlight the non-supportive team and teamwork policies, procedures and structures in the schools and identify the lack of recognition of the specialised skills of science teachers. The implications for the schools and science teachers are considerable, as the current Professional Standards of Education Queensland and the Queensland College of Teachers provide benchmarks of knowledge and practice of teams and teamwork for teachers. The research suggests that the professional standards relating to teams and teamwork cannot be achieved in the present school environment.
Resumo:
In order to develop scientific literacy students need the cognitive tools that enable them to read and evaluate science texts. One cognitive tool that has been widely used in science education to aid the development of conceptual understanding is concept mapping. However, it has been found some students experience difficulty with concept map construction. This study reports on the development and evaluation of an instructional sequence that was used to scaffold the concept-mapping process when middle school students who were experiencing difficulty with science learning used concept mapping to summarise a chapter of a science text. In this study individual differences in working memory functioning are suggested as one reason that students experience difficulty with concept map construction. The study was conducted using a design-based research methodology in the school’s learning support centre. The analysis of student work samples collected during the two-year study identified some of the difficulties and benefits associated with the use of scaffolded concept mapping with these students. The observations made during this study highlight the difficulty that some students experience with the use of concept mapping as a means of developing an understanding of science concepts and the amount of instructional support that is required for such understanding to develop. Specifically, the findings of the study support the use of multi-component, multi-modal instructional techniques to facilitate the development of conceptual understanding with students who experience difficulty with science learning. In addition, the important roles of interactive dialogue and metacognition in the development of conceptual understanding are identified.
Resumo:
Reforms to the national research and research training system by the Commonwealth Government of Australia sought to effectively connect research conducted in universities to Australia's national innovation system. Research training has a key role in ensuring an adequate supply of highly skilled people for the national innovation system. During their studies, research students produce and disseminate a massive amount of new knowledge. Prior to this study, there was no research that examined the contribution of research training to Australia's national innovation system despite the existence of policy initiatives aiming to enhance this contribution. Given Australia's below average (but improving) innovation performance compared to other OECD countries, the inclusion of Finland and the United States provided further insights into the key research question. This study examined three obvious ways that research training contributes to the national innovation systems in the three countries: the international mobility and migration of research students and graduates, knowledge production and distribution by research students, and the impact of research training as advanced human capital formation on economic growth. Findings have informed the concept of a research training culture of innovation that aims to enhance the contribution of research training to Australia's national innovation system. Key features include internationally competitive research and research training environments; research training programs that equip students with economically-relevant knowledge and the capabilities required by employers operating in knowledge-based economies; attractive research careers in different sectors; a national commitment to R&D as indicated by high levels of gross and business R&D expenditure; high private and social rates of return from research training; and the horizontal coordination of key organisations that create policy for, and/or invest in research training.
Resumo:
The androgen receptor (AR) is a ligand-activated transcription factor of the nuclear receptor superfamily that plays a critical role in male physiology and pathology. Activated by binding of the native androgens testosterone and 5-dihydrotestosterone, the AR regulates transcription of genes involved in the development and maintenance of male phenotype and male reproductive function as well as other tissues such as bone and muscle. Deregulation of AR signaling can cause a diverse range of clinical conditions, including the X-linked androgen insensitivity syndrome, a form of motor neuron disease known as Kennedy’s disease, and male infertility. In addition, there is now compelling evidence that the AR is involved in all stages of prostate tumorigenesis including initiation, progression, and treatment resistance. To better understand the role of AR signaling in the pathogenesis of these conditions, it is important to have a comprehensive understanding of the key determinants of AR structure and function. Binding of androgens to the AR induces receptor dimerization, facilitating DNA binding and the recruitment of cofactors and transcriptional machinery to regulate expression of target genes. Various models of dimerization have been described for the AR, the most well characterized interaction being DNA-binding domain- mediated dimerization, which is essential for the AR to bind DNA and regulate transcription. Additional AR interactions with potential to contribute to receptor dimerization include the intermolecular interaction between the AR amino terminal domain and ligand-binding domain known as the N-terminal/C-terminal interaction, and ligand-binding domain dimerization. In this review, we discuss each form of dimerization utilized by the AR to achieve transcriptional competence and highlight that dimerization through multiple domains is necessary for optimal AR signaling.
Resumo:
Poly(vinylidene fluoride) and copolymers of vinylidene fluoride with hexafluoropropylene, trifluoroethylene and chlorotrifluoroethylene have been exposed to gamma irradiation in vacuum, up to doses of 1MGy under identical conditions, to obtain a ranking of radiation sensitivities. Changes in the tensile properties, crystalline melting points,heats of fusion, gel contents and solvent uptake factors were used as the defining parameters. The initial degree of crystallinity and film processing had the greatest influence on relative radiation damage, although the cross-linked network features were almost identical in their solvent swelling characteristics, regardless of the comonomer composition or content.