948 resultados para N2O emission


Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: Craving for alcohol is probably involved in acquisition and maintenance of alcohol dependence to a substantial degree. However, the brain substrates and mechanisms that underlie alcohol craving await more detailed elucidation. METHOD: Positron emission tomography was used to map regional cerebral blood flow (CBF) in 21 detoxified patients with alcohol dependence during exposure to alcoholic and non-alcoholic beverages. RESULTS: During the alcohol condition compared with the control condition, significantly increased CBF was found in the ventral putamen. Additionally, activated areas included insula, dorsolateral prefrontal cortex and cerebellum. Cerebral blood flow increase in these regions was related to self-reports of craving assessed in the alcoholic patients. CONCLUSIONS: In this investigation, cue-induced alcohol craving was associated with activation of brain regions particularly involved in brain reward mechanisms, memory and attentional processes. These results are consistent with studies on craving for other addictive substances and may offer strategies for more elaborate studies on the neurobiology of addiction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this manuscript we are concerned with functional imaging of the colon to assess the kinetics of a microbicide lubricant. The overarching goal is to understand the distribution of the lubricant in the colon. Such information is crucial for understanding the potential impact of the microbicide on HIV viral transmission. The experiment was conducted by imaging a radiolabeled lubricant distributed in the subject’s colon. The tracer imaging was conducted via single photon emission computed tomography (SPECT), a non-invasive, in-vivo functional imaging technique. We develop a novel principal curve algorithm to construct a three dimensional curve through the colon images. The developed algorithm is tested and debugged on several difficult two dimensional images of familiar curves where the original principal curve algorithm does not apply. The final curve fit to the colon data is compared with experimental sigmoidoscope collection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High energy gamma rays can provide fundamental clues to the origins of cosmic rays. In this thesis, TeV gamma-ray emission from the Cygnus region is studied. Previously the Milagro experiment detected five TeV gamma-ray sources in this region and a significant excess of TeV gamma rays whose origin is still unclear. To better understand the diffuse excess the separation of sources and diffuse emission is studied using the latest and most sensitive data set of the Milagro experiment. In addition, a newly developed technique is applied that allows the energy spectrum of the TeV gamma rays to be reconstructed using Milagro data. No conclusive statement can be made about the spectrum of the diffuse emission from the Cygnus region because of its low significance of 2.2 σ above the background in the studied data sample. The entire Cygnus region emission is best fit with a power law with a spectral index of α=2.40 (68% confidence interval: 1.35-2.92) and a exponential cutoff energy of 31.6 TeV (10.0-251.2 TeV). In the case of a simple power law assumption without a cutoff energy the best fit yields a spectral index of α=2.97 (68% confidence interval: 2.83-3.10). Neither of these best fits are in good agreement with the data. The best spectral fit to the TeV emission from MGRO J2019+37, the brightest source in the Cygnus region, yields a spectral index of α=2.30 (68% confidence interval: 1.40-2.70) with a cutoff energy of 50.1 TeV (68% confidence interval: 17.8-251.2 TeV) and a spectral index of α=2.75 (68% confidence interval: 2.65-2.85) when no exponential cutoff energy is assumed. According to the present analysis, MGRO J2019+37 contributes 25% to the differential flux from the entire Cygnus at 15 TeV.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ion impact emission cross sections for eleven transitions from the 5p56p configuration to the 5p56s configuration of neutral xenon occurring in the spectral region between 700 nm and 1000 nm have been measured experimentally. Collisions between both singly- and doublyionized xenon and neutral xenon have been studied. These cross sections are of primary use in the development of a spectrographic diagnostic for Hall effect thruster plasma. A detailed discussion of the experimental methods and the subsequent data reduction is included. The results are presented and the importance of these data for spectrographic emission models of Hall effect thruster plasmas is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) has been used to quantify SO2 emissions from passively degassing volcanoes. This dissertation explores ASTER’s capability to detect SO2 with satellite validation, enhancement techniques and extensive processing of images at a variety of volcanoes. ASTER is compared to the Mini UV Spectrometer (MUSe), a ground based instrument, to determine if reasonable SO2 fluxes can be quantified from a plume emitted from Lascar, Chile. The two sensors were in good agreement with ASTER proving to be a reliable detector of SO2. ASTER illustrated the advantages of imaging a plume in 2D, with better temporal resolution than the MUSe. SO2 plumes in ASTER imagery are not always discernible in the raw TIR data. Principal Component Analysis (PCA) and Decorrelation Stretch (DCS) enhancement techniques were compared to determine how well they highlight a variety of volcanic plumes. DCS produced a consistent output and the composition of the plumes was easy to identify from explosive eruptions. As the plumes became smaller and lower in altitude they became harder to distinguish using DCS. PCA proved to be better at identifying smaller low altitude plumes. ASTER was used to investigate SO2 emissions at Lascar, Chile. Activity at Lascar has been characterized by cyclic behavior and persistent degassing (Matthews et al. 1997). Previous studies at Lascar have primarily focused on changes in thermal infrared anomalies, neglecting gas emissions. Using the SO2 data along with changes in thermal anomalies and visual observations it is evident that Lascar is at the end an eruptive cycle that began in 1993. Declining gas emissions and crater temperatures suggest that the conduit is sealing. ASTER and the Ozone Monitoring Instrument (OMI) were used to determine the annual contribution of SO2 to the troposphere from the Central and South American volcanic arcs between 2000 and 2011. Fluxes of 3.4 Tg/a for Central America and 3.7 Tg/a for South America were calculated. The detection limits of ASTER were explored. The results a proved to be interesting, with plumes from many of the high emitting volcanoes, such as Villarrica, Chile, not being detected by ASTER.