Remote sensing of volcanic plumes using the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER).
Data(s) |
01/01/2012
|
---|---|
Resumo |
The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) has been used to quantify SO2 emissions from passively degassing volcanoes. This dissertation explores ASTER’s capability to detect SO2 with satellite validation, enhancement techniques and extensive processing of images at a variety of volcanoes. ASTER is compared to the Mini UV Spectrometer (MUSe), a ground based instrument, to determine if reasonable SO2 fluxes can be quantified from a plume emitted from Lascar, Chile. The two sensors were in good agreement with ASTER proving to be a reliable detector of SO2. ASTER illustrated the advantages of imaging a plume in 2D, with better temporal resolution than the MUSe. SO2 plumes in ASTER imagery are not always discernible in the raw TIR data. Principal Component Analysis (PCA) and Decorrelation Stretch (DCS) enhancement techniques were compared to determine how well they highlight a variety of volcanic plumes. DCS produced a consistent output and the composition of the plumes was easy to identify from explosive eruptions. As the plumes became smaller and lower in altitude they became harder to distinguish using DCS. PCA proved to be better at identifying smaller low altitude plumes. ASTER was used to investigate SO2 emissions at Lascar, Chile. Activity at Lascar has been characterized by cyclic behavior and persistent degassing (Matthews et al. 1997). Previous studies at Lascar have primarily focused on changes in thermal infrared anomalies, neglecting gas emissions. Using the SO2 data along with changes in thermal anomalies and visual observations it is evident that Lascar is at the end an eruptive cycle that began in 1993. Declining gas emissions and crater temperatures suggest that the conduit is sealing. ASTER and the Ozone Monitoring Instrument (OMI) were used to determine the annual contribution of SO2 to the troposphere from the Central and South American volcanic arcs between 2000 and 2011. Fluxes of 3.4 Tg/a for Central America and 3.7 Tg/a for South America were calculated. The detection limits of ASTER were explored. The results a proved to be interesting, with plumes from many of the high emitting volcanoes, such as Villarrica, Chile, not being detected by ASTER. |
Formato |
application/pdf |
Identificador |
http://digitalcommons.mtu.edu/etds/323 http://digitalcommons.mtu.edu/cgi/viewcontent.cgi?article=1322&context=etds |
Publicador |
Digital Commons @ Michigan Tech |
Fonte |
Dissertations, Master's Theses and Master's Reports - Open |
Palavras-Chave | #Earth Sciences #Geology #Physical Sciences and Mathematics |
Tipo |
text |