978 resultados para Minimal Inhibitory Concentration (MIC)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Propolis effect on the growth and apoptosis of human lung adenocarcinoma (A549 cells) was investigated as well as its mechanisms. Cells were incubated with propolis for 72 h, and 3-(4,5- dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and lactate dehydrogenase assays were employed to assess cell viability and the inhibitory concentration (IC). Apoptosis was detected by Acridine Orange/Ethidium Bromide and 4',6-diamidino-2-phenylindole staining after 24 and 48 h of incubation with ¼ IC50 of propolis by testing the mitochondrial membrane potential (ΔΨm) and the expression of apoptosis-related genes (p53, Caspase-3, Bax, Bcl-2, Bcl-XL , Noxa, Puma and p21) by reverse transcription polymerase chain reaction. Propolis displayed antiproliferative and cytotoxic effects on A549 cells in a dose- and time-dependent manner, but it did not suppress the growth of normal Vero cells. An enhanced apoptosis was seen in A549 propolis-treated cells after 48 h compared with the control cells. Propolis decreased mitochondrial membrane potential by overexpression of pro-apoptotic genes (Bax and Noxa) and reduction of the antiapoptotic gene Bcl-XL . The expression level of other genes remained unchanged (p53, Caspse-3 and Bax), whereas p21 expression was increased. Propolis induced caspase-independent apoptosis through a p53-independent mitochondrial pathway, and cell cycle arrest by upregulation of p21. Although propolis induces apoptosis mainly by p53-independent manner, it may be induced by another pathway, and new insights may arise for preventing or treating lung cancer.
Resumo:
Fundação do Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Microbiologia - IBILCE
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
FUNDAMENTO: Penicilina G benzatina a cada 3 semanas é o protocolo padrão para a profilaxia secundária para febre reumática recorrente. OBJETIVO: Avaliar o efeito da penicilina G benzatina em Streptococcus sanguinis e Streptococcus oralis em pacientes com doença valvular cardíaca, devido à febre reumática com recebimento de profilaxia secundária. MÉTODOS: Estreptococos orais foram avaliados antes (momento basal) e após 7 dias (7º dia) iniciando-se com penicilina G benzatina em 100 pacientes que receberam profilaxia secundária da febre reumática. Amostras de saliva foram avaliadas para verificar a contagem de colônias e presença de S. sanguinis e S. oralis. Amostras de saliva estimulada pela mastigação foram serialmente diluídas e semeadas em placas sobre agar-sangue de ovelhas seletivo e não seletivo a 5% contendo penicilina G. A identificação da espécie foi realizada com testes bioquímicos convencionais. Concentrações inibitórias mínimas foram determinadas com o Etest. RESULTADOS: Não foram encontradas diferenças estatísticas da presença de S. sanguinis comparando-se o momento basal e o 7º dia (p = 0,62). No entanto, o número existente de culturas positivas de S. oralis no 7º dia após a Penicilina G benzatina apresentou um aumento significativo em relação ao valor basal (p = 0,04). Não houve diferença estatística existente entre o momento basal e o 7º dia sobre o número de S. sanguinis ou S. oralis UFC/mL e concentrações inibitórias medianas. CONCLUSÃO: O presente estudo mostrou que a Penicilina G benzatina a cada 3 semanas não alterou a colonização por S. sanguinis, mas aumentou a colonização de S. oralis no 7º dia de administração. Portanto, a susceptibilidade do Streptococcus sanguinis e Streptococcus oralis à penicilina G não foi modificada durante a rotina de profilaxia secundária da febre reumática utilizando a penicilina G.
Resumo:
Sugarcane bagasse was characterized as a feedstock for the production of ethanol using hydrothermal pretreatment. Reaction temperature and time were varied between 160 and 200A degrees C and 5-20 min, respectively, using a response surface experimental design. The liquid fraction was analyzed for soluble carbohydrates and furan aldehydes. The solid fraction was analyzed for structural carbohydrates and Klason lignin. Pretreatment conditions were evaluated based on enzymatic extraction of glucose and xylose and conversion to ethanol using a simultaneous saccharification and fermentation scheme. SSF experiments were conducted with the washed pretreated biomass. The severity of the pretreatment should be sufficient to drive enzymatic digestion and ethanol yields, however, sugars losses and especially sugar conversion into furans needs to be minimized. As expected, furfural production increased with pretreatment severity and specifically xylose release. However, provided that the severity was kept below a general severity factor of 4.0, production of furfural was below an inhibitory concentration and carbohydrate contents were preserved in the pretreated whole hydrolysate. There were significant interactions between time and temperature for all the responses except cellulose digestion. The models were highly predictive for cellulose digestibility (R (2) = 0.8861) and for ethanol production (R (2) = 0.9581), but less so for xylose extraction. Both cellulose digestion and ethanol production increased with severity, however, high levels of furfural generated under more severe pretreatment conditions favor lower severity pretreatments. The optimal pretreatment condition that gave the highest conversion yield of ethanol, while minimizing furfural production, was judged to be 190A degrees C and 17.2 min. The whole hydrolysate was also converted to ethanol using SSF. To reduce the concentration of inhibitors, the liquid fraction was conditioned prior to fermentation by removing inhibitory chemicals using the fungus Coniochaeta ligniaria.
Resumo:
Introduction: Toxoplasmosis is usually a benign infection, except in the event of ocular, central nervous system (CNS), or congenital disease and particularly when the patient is immunocompromised. Treatment consists of drugs that frequently cause adverse effects; thus, newer, more effective drugs are needed. In this study, the possible activity of artesunate, a drug successfully being used for the treatment of malaria, on Toxoplasma gondii growth in cell culture is evaluated and compared with the action of drugs that are already being used against this parasite. Methods: LLC-MK2 cells were cultivated in RPMI medium, kept in disposable plastic bottles, and incubated at 36 degrees C with 5% CO2. Tachyzoites of the RH strain were used. The following drugs were tested: artesunate, cotrimoxazole, pentamidine, pyrimethamine, quinine, and trimethoprim. The effects of these drugs on tachyzoites and LLC-MK2 cells were analyzed using nonlinear regression analysis with Prism 3.0 software. Results: Artesunate showed a mean tachyzoite inhibitory concentration (IC50) of 0.075 mu M and an LLC MK2 toxicity of 2.003 mu M. Pyrimethamine was effective at an IC50 of 0.482 mu M and a toxicity of 11.178 mu M. Trimethoprim alone was effective against the in vitro parasite. Cotrimoxazole also was effective against the parasite but at higher concentrations than those observed for artesunate and pyrimethamine. Pentamidine and quinine had no inhibitory effect over tachyzoites. Conclusions: Artesunate is proven in vitro to be a useful alternative for the treatment of toxoplasmosis, implying a subsequent in vivo effect and suggesting the mechanism of this drug against the parasite.
Resumo:
An octahedral Zn complex with o-phenanthroline (o-phen) and cyanoguanidine (cnge) has been synthesized and characterized. The crystal structural data show the formation of a ZnN5O core where the metal coordinates to two mutually perpendicular o-phenanthrolines as bidentate ligands [Zn-N bond lengths in the 2.124(2)-2.193(2) angstrom range], the cyanide nitrogen of a cnge [d(Zn-N) = 2.092(2) angstrom, angle(Zn-N-C) = 161.1(2)degrees], and a water molecule [d(Zn-Ow) = 2.112(2) angstrom]. Spectral data (FT-IR, Raman, and fluorescence) and speciation studies are in agreement with the structure found in the solid state and the one proposed to exist in the solution. To evaluate the changes in the microbiological activity of Zn, antibacterial studies were carried out by observing the changes in minimum inhibitory concentration of the complex, the ligands, and the metal against five different bacterial strains. The antibacterial activity of Zn improved upon complexation in three of the tested strains.
Resumo:
Abstract Background Bacillus sp. H2O-1, isolated from the connate water of a Brazilian reservoir, produces an antimicrobial substance (denoted as AMS H2O-1) that is active against sulfate reducing bacteria, which are the major bacterial group responsible for biogenic souring and biocorrosion in petroleum reservoirs. Thus, the use of AMS H2O-1 for sulfate reducing bacteria control in the petroleum industry is a promising alternative to chemical biocides. However, prior to the large-scale production of AMS H2O-1 for industrial applications, its chemical structure must be elucidated. This study also analyzed the changes in the wetting properties of different surfaces conditioned with AMS H2O-1 and demonstrated the effect of AMS H2O-1 on sulfate reducing bacteria cells. Results A lipopeptide mixture from AMS H2O-1 was partially purified on a silica gel column and identified via mass spectrometry (ESI-MS). It comprises four major components that range in size from 1007 to 1049 Da. The lipid moiety contains linear and branched β-hydroxy fatty acids that range in length from C13 to C16. The peptide moiety contains seven amino acids identified as Glu-Leu-Leu-Val-Asp-Leu-Leu. Transmission electron microscopy revealed cell membrane alteration of sulfate reducing bacteria after AMS H2O-1 treatment at the minimum inhibitory concentration (5 μg/ml). Cytoplasmic electron dense inclusions were observed in treated cells but not in untreated cells. AMS H2O-1 enhanced the osmosis of sulfate reducing bacteria cells and caused the leakage of the intracellular contents. In addition, contact angle measurements indicated that different surfaces conditioned by AMS H2O-1 were less hydrophobic and more electron-donor than untreated surfaces. Conclusion AMS H2O-1 is a mixture of four surfactin-like homologues, and its biocidal activity and surfactant properties suggest that this compound may be a good candidate for sulfate reducing bacteria control. Thus, it is a potential alternative to the chemical biocides or surface coating agents currently used to prevent SRB growth in petroleum industries.
Resumo:
This study evaluated the inhibitory activity of copaiba oil (Copaifera officinalis against the cariogenic microorganism, Streptococcus mutans. For such purpose, a minimum inhibition concentration test of copaiba oil against S. mutans was performed, using the serial dilution in broth technique, with a negative control, a positive control (0.12% chlorhexidine) and a 10% copaíba oil solution as a test. A minimum bactericidal concentration test with tubes presenting microbial inhibition was also conduced. In the minimum inhibitory concentration test, copaiba oil showed inhibition of bacterial growth at all concentrations tested up to 0.78 µL/mL of the 10% copaiba oil solution in the broth. In addition, the negative control had no inhibition, and the 0.12% chlorhexidine solution was effective up to 6.25 µL/mL in the broth. Copaiba oil showed a bacteriostatic activity against S. mutans at low concentrations, and could be a an option of phytotherapic agent to be used against cariogenic bacteria in the prevention of caries disease.
Resumo:
Zusammenfassung Um photoschaltbare Gelbildner zu synthetisieren wurde auf bereits bekannte Gelbildner zurückgegriffen und eine Azobenzolgruppe, als photoschaltbare Einheit eingebaut. Die Modifizierung der Alkylsemicarbazide führte zu 7 Azosemicarbaziden (36-42), die alle gelbildende Eigenschaften haben. Die Gele des Alkylsemicarbazids 1 und der Azosemicarbazide 37 und 38 erwiesen sich als die stabilsten, weshalb an ihnen die meisten Untersuchungen durchgeführt wurden. Ihre Struktur ist in Abbildung 1 noch einmal aufgeführt. Die Alkylsemicarbazide vergelen Toluol, 1,2-Dichlorbenzol, Decalin, Tetralin und Cyclohexan. Die minimalen Gelbildnerkonzentration geht dabei von ~0,5 Gew.% für Toluol bis ~10 Gew.% für Tetralin und Cyclohexan. Die Azosemicarbazide 36-40 vergelen Toluol und Tetralin mit ~10 Gew.%, 1,2-Dichlorbenzol und Decalin mit ~4-7 Gew.Durch den Vergleich verschiedener Kristallstrukturen (von 1, 5, 19 und 43) und einer Röntgenkleinwinkelmessung eines Gels wurden zwei mögliche Kristallstrukturen für 37 vorgestellt. Die Tatsache, dass die IR-Spektren aller Semicarbazide im Bulk und als Gel sehr ähnliche Absorptionsbanden im Bereich der N-H-Schwingungen besitzen, zeigt, dass das vorgestellt Wasserstoffbrückenmotiv (Kapitel 4.1, Schema 4.1) für alle Semicarbazide nahezu gleich ist. Des Weiteren konnte ein Zusammenhang von der minimalen Gelbildner-konzentration, dem Schmelzpunkt und der Struktur des Gelnetz-werks gefunden werden. Je feiner das Netzwerk und damit je größer die Oberfläche, desto niedriger die minimale Gelbildnerkonzentration und desto niedriger der Schmelzpunkt der Gele. Gele mit Decalin fallen dabei durch eine andere Morphologie und besonders hohe Schmelzpunkte auf (Abbildung 2). Die Photoschaltbarkeit wurde im Gel mit organischen Lösungsmitteln und mit den Flüssigkristallmischungen durch UV/Vis-Messungen, Polarisationsmikroskopie, sowie durch die Bestimmung der Schaltzeiten und der Schwellspannung für LC II-Gele nachgewiesen. Erste dielektrische Messungen an einem LC II-Gel zeigen, dass die Goldstone-Mode im Gel unterdrück wird. Diese Ergebnisse sollen mit weiteren Untersuchungen untermauert werden.