978 resultados para Marshall, Elihu F.
Resumo:
Traditional Time Division Multiple Access (TDMA) protocol provides deterministic periodic collision free data transmissions. However, TDMA lacks flexibility and exhibits low efficiency in dynamic environments such as wireless LANs. On the other hand contention-based MAC protocols such as the IEEE 802.11 DCF are adaptive to network dynamics but are generally inefficient in heavily loaded or large networks. To take advantage of the both types of protocols, a D-CVDMA protocol is proposed. It is based on the k-round elimination contention (k-EC) scheme, which provides fast contention resolution for Wireless LANs. D-CVDMA uses a contention mechanism to achieve TDMA-like collision-free data transmissions, which does not need to reserve time slots for forthcoming transmissions. These features make the D-CVDMA robust and adaptive to network dynamics such as node leaving and joining, changes in packet size and arrival rate, which in turn make it suitable for the delivery of hybrid traffic including multimedia and data content. Analyses and simulations demonstrate that D-CVDMA outperforms the IEEE 802.11 DCF and k-EC in terms of network throughput, delay, jitter, and fairness.
Resumo:
Haptic information originates from a different human sense (touch), therefore the quality of service (QoS) required to supporthaptic traffic is significantly different from that used to support conventional real-time traffic such as voice or video. Each type ofnetwork impairment has different (and severe) impacts on the user’s haptic experience. There has been no specific provision of QoSparameters for haptic interaction. Previous research into distributed haptic virtual environments (DHVEs) have concentrated onsynchronization of positions (haptic device or virtual objects), and are based on client-server architectures.We present a new peerto-peer DHVE architecture that further extends this to enable force interactions between two users whereby force data are sent tothe remote peer in addition to positional information. The work presented involves both simulation and practical experimentationwhere multimodal data is transmitted over a QoS-enabled IP network. Both forms of experiment produce consistent results whichshow that the use of specific QoS classes for haptic traffic will reduce network delay and jitter, leading to improvements in users’haptic experiences with these types of applications.
Resumo:
Many of the challenges faced in health care delivery can be informed through building models. In particular, Discrete Conditional Survival (DCS) models, recently under development, can provide policymakers with a flexible tool to assess time-to-event data. The DCS model is capable of modelling the survival curve based on various underlying distribution types and is capable of clustering or grouping observations (based on other covariate information) external to the distribution fits. The flexibility of the model comes through the choice of data mining techniques that are available in ascertaining the different subsets and also in the choice of distribution types available in modelling these informed subsets. This paper presents an illustrated example of the Discrete Conditional Survival model being deployed to represent ambulance response-times by a fully parameterised model. This model is contrasted against use of a parametric accelerated failure-time model, illustrating the strength and usefulness of Discrete Conditional Survival models.
Resumo:
A key issue in the design of next generation Internet routers and switches will be provision of traffic manager (TM) functionality in the datapaths of their high speed switching fabrics. A new architecture that allows dynamic deployment of different TM functions is presented. By considering the processing requirements of operations such as policing and congestion, queuing, shaping and scheduling, a solution has been derived that is scalable with a consistent programmable interface. Programmability is achieved using a function computation unit which determines the action (e.g. drop, queue, remark, forward) based on the packet attribute information and a memory storage part. Results of a Xilinx Virtex-5 FPGA reference design are presented.
Resumo:
The paper introduces a new modeling approach that represents the waiting times in an Accident and Emergency (A&E) Department in a UK based National Health Service (NHS) hospital. The technique uses Bayesian networks to capture the heterogeneity of arriving patients by representing how patient covariates interact to influence their waiting times in the department. Such waiting times have been reviewed by the NHS as a means of investigating the efficiency of A&E departments (Emergency Rooms) and how they operate. As a result activity targets are now established based on the patient total waiting times with much emphasis on trolley waits.
Resumo:
In the past few decades, Coxian phase-type distributions have become increasingly more popular as a means of representing survival times. In healthcare, they are considered suitable for modelling the length of stay of patients in hospital and more recently for modelling the patient waiting times in Accident and Emergency Departments. The Coxian phase-type distribution has not only been shown to provide a good representation of real survival data, but its interpretation seems reasonably initiative to the medical experts. The drawback, however, is fitting the distribution to the data. There have been many attempts at accurately estimating the Coxian phase-type parameters. This paper wishes to examine the most promising of the approaches reported in the literature to determine the most accurate. Three performance measures are introduced to assess the fitting process of the algorithms along with the likelihood values and AIC to examine the goodness of fit and complexity of the model. Previous research suggests that the fitting process is strongly influenced by the initial parameter estimates and the data itself being quite variable. To overcome this, one experiment in this research paper will use the same initial parameter values for each estimation and perform the fits on the data simulated from a Coxian phase-type distribution with known parameters.
Resumo:
Discrete Conditional Phase-type (DC-Ph) models consist of a process component (survival distribution) preceded by a set of related conditional discrete variables. This paper introduces a DC-Ph model where the conditional component is a classification tree. The approach is utilised for modelling health service capacities by better predicting service times, as captured by Coxian Phase-type distributions, interfaced with results from a classification tree algorithm. To illustrate the approach, a case-study within the healthcare delivery domain is given, namely that of maternity services. The classification analysis is shown to give good predictors for complications during childbirth. Based on the classification tree predictions, the duration of childbirth on the labour ward is then modelled as either a two or three-phase Coxian distribution. The resulting DC-Ph model is used to calculate the number of patients and associated bed occupancies, patient turnover, and to model the consequences of changes to risk status.