753 resultados para Manufacturing Process
Resumo:
Nonlinear principal component analysis (PCA) based on neural networks has drawn significant attention as a monitoring tool for complex nonlinear processes, but there remains a difficulty with determining the optimal network topology. This paper exploits the advantages of the Fast Recursive Algorithm, where the number of nodes, the location of centres, and the weights between the hidden layer and the output layer can be identified simultaneously for the radial basis function (RBF) networks. The topology problem for the nonlinear PCA based on neural networks can thus be solved. Another problem with nonlinear PCA is that the derived nonlinear scores may not be statistically independent or follow a simple parametric distribution. This hinders its applications in process monitoring since the simplicity of applying predetermined probability distribution functions is lost. This paper proposes the use of a support vector data description and shows that transforming the nonlinear principal components into a feature space allows a simple statistical inference. Results from both simulated and industrial data confirm the efficacy of the proposed method for solving nonlinear principal component problems, compared with linear PCA and kernel PCA.
Resumo:
Polymer extrusion is one of the major methods of processing polymer materials and advanced process monitoring is important to ensure good product quality. However, commonly used process monitoring devices, e.g. temperature and pressure sensors, are limited in providing information on process dynamics inside an extruder barrel. Screw load torque dynamics, which may occur due to changes in solids conveying, melting, mixing, melt conveying, etc., are believed to be a useful indicator of process fluctuations inside the extruder barrel. However, practical measurement of the screw load torque is difficult to achieve. In this work, inferential monitoring of the screw load torque signal in an extruder was shown to be possible by monitoring the motor current (armature and/or field) and simulation studies were used to check the accuracy of the proposed method. The ability of this signal to aid identification and diagnosis of process issues was explored through an experimental investigation. Power spectral density and wavelet frequency analysis were implemented together with a covariance analysis. It was shown that the torque signal is dominated by the solid friction in the extruder and hence it did not correlate well with melting fluctuations. However, it is useful for online identification of solids conveying issues.
Resumo:
The ability to accurately predict residual stresses and resultant distortions is a key product from process assembly simulations. Assembly processes necessarily consider large structural components potentially making simulations computationally expensive. The objective herein is to develop greater understanding of the influence of friction stir welding process idealization on the prediction of residual stress and distortion and thus determine the minimum required modeling fidelity for future airframe assembly simulations. The combined computational and experimental results highlight the importance of accurately representing the welding forging force and process speed. In addition, the results emphasize that increased CPU simulation times are associated with representing the tool torque, while there is potentially only local increase in prediction fidelity.
Resumo:
The finite element method plays an extremely important role in forging process design as it provides a valid means to quantify forging errors and thereby govern die shape modification to improve the dimensional accuracy of the component. However, this dependency on process simulation could raise significant problems and present a major drawback if the finite element simulation results were inaccurate. This paper presents a novel approach to assess the dimensional accuracy and shape quality of aeroengine blades formed from finite element hot-forging simulation. The proposed virtual inspection system uses conventional algorithms adopted by modern coordinate measurement processes as well as the latest free-form surface evaluation techniques to provide a robust framework for virtual forging error assessment. Established techniques for the physical registration of real components have been adapted to localise virtual models in relation to a nominal Design Coordinate System. Blades are then automatically analysed using a series of intelligent routines to generate measurement data and compute dimensional errors. The results of a comparison study indicate that the virtual inspection results and actual coordinate measurement data are highly comparable, validating the approach as an effective and accurate means to quantify forging error in a virtual environment. Consequently, this provides adequate justification for the implementation of the virtual inspection system in the virtual process design, modelling and validation of forged aeroengine blades in industry.
Resumo:
Virtual manufacturing of composites can yield an initial early estimation of the induced residual thermal stresses that affect component fatigue life, and deformations that affect required tolerances for assembly. Based on these estimation, the designer can make early decisions, which can help in reducing cost, regarding changes in part design or material properties. In this paper, an approach is proposed to simulate the autoclave manufacturing technique for unidirectional composites. The proposed approach consists of three modules. The first module is a Thermochemical model to estimate temperature and the degree of cure distributions in the composite part during the cure cycle. The second and third modules are stress analysis using FE-Implicit and FE-Explicit respectively. User-material subroutine will be used to model the Viscoelastic properties of the material based on micromechanical theory. Estimated deformation of the composite part can be corrected during the autoclave process by modifying the process-tool design. The deformed composite surface is sent to CATIA for design modification of the process-tool.
Resumo:
The need to account for the effect of design decisions on manufacture and the impact of manufacturing cost on the life cycle cost of any product are well established. In this context, digital design and manufacturing solutions have to be further developed to facilitate and automate the integration of cost as one of the major driver in the product life cycle management. This article is to present an integration methodology for implementing cost estimation capability within a digital manufacturing environment. A digital manufacturing structure of knowledge databases are set out and the ontology of assembly and part costing that is consistent with the structure is provided. Although the methodology is currently used for recurring cost prediction, it can be well applied to other functional developments, such as process planning. A prototype tool is developed to integrate both assembly time cost and parts manufacturing costs within the same digital environment. An industrial example is used to validate this approach.
Resumo:
This work presents a computational framework based on finite element methods to simulate the fibre-embedding process using ultrasonic consolidation process. The computational approach comprises of a material model which takes into account thermal and acoustic softening effects and a friction model which indicates the realistic friction behaviour at the interfaces. The derived material model and developed friction model have been incorporated in finite element model. Using the implemented material and friction model, thermo-mechanical analyses of embedding of fibre in aluminium alloy 3003 has been performed. Effect of different process parameters, such as velocity of sonotrode, displacement amplitude of ultrasonic vibration and applied loads, is studied and compared with the experimental results. The presented work has specially focused on the quality of the developed weld which could be evaluated by the friction work and the coverage of the fibre which is estimated by the plastic flow around the fibre. The computed friction work obtained from the thermomechanial analyses performed in this study show a similar trend as that of the experimentally found fracture energies. © Springer-Verlag London Limited 2010.
Resumo:
This paper examines the applicability of an immersive virtual reality (VR) system to the process of organizational learning in a manufacturing context. The work focuses on the extent to which realism has to be represented in a simulated product build scenario in order to give the user an effective learning experience for an assembly task. Current technologies allow the visualization and manipulation of objects in VR systems but physical behaviors such as contact between objects and the effects of gravity are not commonly represented in off the shelf simulation solutions and the computational power required to facilitate these functions remains a challenge. This work demonstrates how physical behaviors can be coded and represented through the development of more effective mechanisms for the computer aided design (CAD) and VR interface.
Resumo:
Aircraft design is a complex, long and iterative process that requires the use of various specialties and optimization tools. However these tools and specialities do not include manufacturing, which is often considered later in the product development process leading to higher cost and time delays. This work focuses on the development of an automated design tool that accounts for manufacture during the design process focusing on early geometry definition which in turn informs assembly planning. To accomplish this task the design process needs to be open to any variation in structural configuration while maintaining the design intent. Redefining design intent as a map which links a set of requirements to a set of functions using a numerical approach enables the design process itself to be considered as a mathematical function. This definition enables the design process to utilise captured design knowledge and translate it into a set of mathematical equations that design the structure. This process is articulated in this paper using the structural design and definition for an aircraft fuselage section as an exemplar.
Resumo:
Plasma etch is a key process in modern semiconductor manufacturing facilities as it offers process simplification and yet greater dimensional tolerances compared to wet chemical etch technology. The main challenge of operating plasma etchers is to maintain a consistent etch rate spatially and temporally for a given wafer and for successive wafers processed in the same etch tool. Etch rate measurements require expensive metrology steps and therefore in general only limited sampling is performed. Furthermore, the results of measurements are not accessible in real-time, limiting the options for run-to-run control. This paper investigates a Virtual Metrology (VM) enabled Dynamic Sampling (DS) methodology as an alternative paradigm for balancing the need to reduce costly metrology with the need to measure more frequently and in a timely fashion to enable wafer-to-wafer control. Using a Gaussian Process Regression (GPR) VM model for etch rate estimation of a plasma etch process, the proposed dynamic sampling methodology is demonstrated and evaluated for a number of different predictive dynamic sampling rules. © 2013 IEEE.
Resumo:
In the semiconductor manufacturing environment it is very important to understand which factors have the most impact on process outcomes and to control them accordingly. This is usually achieved through design of experiments at process start-up and long term observation of production. As such it relies heavily on the expertise of the process engineer. In this work, we present an automatic approach to extracting useful insights about production processes and equipment based on state-of-the-art Machine Learning techniques. The main goal of this activity is to provide tools to process engineers to accelerate the learning-by-observation phase of process analysis. Using a Metal Deposition process as an example, we highlight various ways in which the extracted information can be employed.