653 resultados para MYOCARDIUM


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Obesity and diabetes are frequently associated with cardiovascular disease. When a normal heart is subjected to brief/sublethal repetitive ischemia and reperfusion (I/R), adaptive responses are activated to preserve cardiac structure and function. These responses include but are not limited to alterations in cardiac metabolism, reduced calcium responsiveness, and induction of antioxidant enzymes. In a model of ischemic cardiomyopathy inducible by brief repetitive I/R, we hypothesized that dysregulation of these adaptive responses in diet-induced obese (DIO) mice would contribute to enhanced myocardial injury. DIO C57BL/6J mice were subjected to 15 min of daily repetitive I/R while under short-acting anesthesia, a protocol that results in the development of fibrotic cardiomyopathy. Cardiac lipids and candidate gene expression were analyzed at 3 days, and histology at 5 days of repetitive I/R. Total free fatty acids (FFAs) in the cardiac extracts of DIO mice were significantly elevated, reflecting primarily the dietary fatty acid (FA) composition. Compared with lean controls, cardiac FA oxidation (FAO) capacity of DIO mice was significantly higher, concurrent with increased expression of FA metabolism gene transcripts. Following 15 min of daily repetitive I/R for 3 or 5 days, DIO mice exhibited increased susceptibility to I/R and, in contrast to lean mice, developed microinfarction, which was associated with an exaggerated inflammatory response. Repetitive I/R in DIO mice was associated with more profound significant downregulation of FA metabolism gene transcripts and elevated FFAs and triglycerides. Maladaptive metabolic changes of FA metabolism contribute to enhanced myocardial injury in diet-induced obesity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The "lipotoxic footprint" of cardiac maladaptation in diet-induced obesity is poorly defined. We investigated how manipulation of dietary lipid and carbohydrate influenced potential lipotoxic species in the failing heart. In Wistar rats, contractile dysfunction develops at 48 weeks on a high-fat/high-carbohydrate "Western" diet, but not on low-fat/high-carbohydrate or high-fat diets. Cardiac content of the lipotoxic candidates--diacylglycerol, ceramide, lipid peroxide, and long-chain acyl-CoA species--was measured at different time points by high-performance liquid chromatography and biochemical assays, as was lipogenic capacity in the heart and liver by qRT-PCR and radiometric assays. Changes in membranes fluidity were also monitored using fluorescence polarization. We report that Western feeding induced a 40% decrease in myocardial palmitoleoyl-CoA content and a similar decrease in the unsaturated-to-saturated fatty acid ratio. These changes were associated with impaired cardiac mitochondrial membrane fluidity. At the same time, hepatic lipogenic capacity was increased in animals fed Western diet (+270% fatty acid elongase activity compared with high-fat diet), while fatty acid desaturase activity decreased over time. Our findings suggest that dysregulation of lipogenesis is a significant component of heart failure in diet-induced obesity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Neonatal and adult cardiomyocytes were isolated from rat hearts. Some of the adult myocytes were cultured to allow for cell dedifferentiation, a phenomenon thought to mimic cell changes that occur in stressed myocardium, with myocytes regressing to a fetal pattern of metabolism and stellate neonatal shape.Using fluorescence deconvolution microscopy, cells were probed with fluorescent markers and scanned for a number of proteins associated with ion control, calcium movements and cardiac function. Image analysis of deconvoluted image stacks and sequential real-time image recordings of calcium transients of cells were made.All three myocyte groups were predominantly comprised of binucleate cells. Clustering of proteins to a single nucleus was a common observation, suggesting that one nucleus is active in protein synthesis pathways, while the other nucleus assumes a 'dormant' or different role and that cardiomyocytes might be mitotically active even in late development, or specific protein syntheses could be targeted and regulated for reintroduction into the cell cycle.Such possibilities would extend cardiac disease associated stem cell research and therapy options, while producing valuable insights into developmental and death pathways of binucleate cardiomyocytes (word count 183).

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Obesity and diabetes are associated with increased fatty acid availability in excess of muscle fatty acid oxidation capacity. This mismatch is implicated in the pathogenesis of cardiac contractile dysfunction and also in the development of skeletal-muscle insulin resistance. We tested the hypothesis that 'Western' and high fat diets differentially cause maladaptation of cardiac- and skeletal-muscle fatty acid oxidation, resulting in cardiac contractile dysfunction. Wistar rats were fed on low fat, 'Western' or high fat (10, 45 or 60% calories from fat respectively) diet for acute (1 day to 1 week), short (4-8 weeks), intermediate (16-24 weeks) or long (32-48 weeks) term. Oleate oxidation in heart muscle ex vivo increased with high fat diet at all time points investigated. In contrast, cardiac oleate oxidation increased with Western diet in the acute, short and intermediate term, but not in the long term. Consistent with fatty acid oxidation maladaptation, cardiac power decreased with long-term Western diet only. In contrast, soleus muscle oleate oxidation (ex vivo) increased only in the acute and short term with either Western or high fat feeding. Fatty acid-responsive genes, including PDHK4 (pyruvate dehydrogenase kinase 4) and CTE1 (cytosolic thioesterase 1), increased in heart and soleus muscle to a greater extent with feeding a high fat diet compared with a Western diet. In conclusion, we implicate inadequate induction of a cassette of fatty acid-responsive genes, and impaired activation of fatty acid oxidation, in the development of cardiac dysfunction with Western diet.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cardiovascular magnetization transfer ratio (MTR) imaging by steady state free precession is a promising imaging method to assess microstructural changes within the myocardium. Hence, MTR imaging was correlated to histological analysis. Three postmortem cases were selected based on a suspicion of myocardial infarction. MTR and T2 -weighted (T2w ) imaging was performed, followed by autopsy and histological analysis. All tissue abnormalities, identified by autopsy or histology, were retrospectively selected on visually matched MTR and T2w images, and corresponding MTR values compared with normal appearing tissue. Regions of elevated MTR (up to approximately 20%, as compared to normal tissue), appearing hypo-intense in T2w -images, revealed the presence of fibrous tissue in microscopic histological analysis. Macroscopic observation (autopsy) described scar tissue only in one case. Regions of reduced MTR (up to approximately 20%) corresponded either to (i) the presence of edema, appearing hyperintense in T2w -images and confirmed by autopsy, or to (ii) inflammatory granulocyte infiltration at a microscopic level, appearing as hypo-intense T2w -signal, but not observed by autopsy. Findings from cardiovascular MTR imaging corresponded to histology results. In contrast to T2w -imaging, MTR imaging discriminated between normal myocardium, scar tissue and regions of acute myocardial infarction in all three cases. J. Magn. Reson. Imaging 2013. © 2013 Wiley Periodicals, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVE The aim of this work is to investigate and compare cardiac proton density (PD) weighted fast field echo (FFE) post-mortem magnetic resonance (PMMR) imaging with standard cardiac PMMR imaging (T1-weighted and T2-weighted turbo spin-echo (TSE)), postmortem CT (PMCT) as well as autopsy. MATERIALS AND METHODS Two human cadavers sequentially underwent cardiac PMCT and PMMR imaging (PD-weighted FFE, T1-weighted and T2-weighted TSE) and autopsy. The cardiac PMMR images were compared to each other as well as to PMCT and autopsy findings. RESULTS For the first case, cardiac PMMR exhibited a focal region of low signal in PD-weighted FFE and T2-weighted TSE images, surrounded by a signal intense rim in the T2-weighted images. T1-weighted TSE and PMCT did not appear to identify any focal abnormality. Macroscopic inspection identified a blood clot; histology confirmed this to be a thrombus with an adhering myocardial infarction. In the second case, a myocardial rupture with heart tamponade was identified in all PMMR images, located at the anterior wall of the left ventricle; PMCT excluded additional ruptures. In PD-weighted FFE and T2-weighted TSE images, it occurred hypo-intense, while resulting in small clustered hyper-intense spots in T1-weighted TSE. Autopsy confirmed the PMMR and PMCT findings. CONCLUSIONS Presented initial results have shown PD-weighted FFE to be a valuable imaging sequence in addition to traditional T2-weighted TSE imaging for blood clots and myocardial haemorrhage with clearer contrast between affected and healthy myocardium.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aims Myofibroblasts (MFBs) as appearing in the myocardium during fibrotic remodelling induce slow conduction following heterocellular gap junctional coupling with cardiomyocytes (CMCs) in bioengineered tissue preparations kept under isometric conditions. In this study, we investigated the hypothesis that strain as developed during diastolic filling of the heart chambers may modulate MFB-dependent slow conduction. Methods and results Effects of defined levels of strain on single-cell electrophysiology (patch clamp) and impulse conduction in patterned growth cell strands (optical mapping) were investigated in neonatal rat ventricular cell cultures (Wistar) grown on flexible substrates. While 10.5% strain only minimally affected conduction times in control CMC strands (+3.2%, n.s.), it caused a significant slowing of conduction in the fibrosis model consisting of CMC strands coated with MFBs (conduction times +26.3%). Increased sensitivity to strain of the fibrosis model was due to activation of mechanosensitive channels (MSCs) in both CMCs and MFBs that aggravated the MFB-dependent baseline depolarization of CMCs. As found in non-strained preparations, baseline depolarization of CMCs was partly due to the presence of constitutively active MSCs in coupled MFBs. Constitutive activity of MSCs was not dependent on the contractile state of MFBs, because neither stimulation (thrombin) nor suppression (blebbistatin) thereof significantly affected conduction velocities in the non-strained fibrosis model. Conclusions The findings demonstrate that both constitutive and strain-induced activity of MSCs in MFBs significantly enhance their depolarizing effect on electrotonically coupled CMCs. Ensuing aggravation of slow conduction may contribute to the precipitation of strain-related arrhythmias in fibrotically remodelled hearts.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVES To investigate and correct the temperature dependence of postmortem MR quantification used for soft tissue characterization and differentiation in thoraco-abdominal organs. MATERIAL AND METHODS Thirty-five postmortem short axis cardiac 3-T MR examinations were quantified using a quantification sequence. Liver, spleen, left ventricular myocardium, pectoralis muscle and subcutaneous fat were analysed in cardiac short axis images to obtain mean T1, T2 and PD tissue values. The core body temperature was measured using a rectally inserted thermometer. The tissue-specific quantitative values were related to the body core temperature. Equations to correct for temperature differences were generated. RESULTS In a 3D plot comprising the combined data of T1, T2 and PD, different organs/tissues could be well differentiated from each other. The quantitative values were influenced by the temperature. T1 in particular exhibited strong temperature dependence. The correction of quantitative values to a temperature of 37 °C resulted in better tissue discrimination. CONCLUSION Postmortem MR quantification is feasible for soft tissue discrimination and characterization of thoraco-abdominal organs. This provides a base for computer-aided diagnosis and detection of tissue lesions. The temperature dependence of the T1 values challenges postmortem MR quantification. Equations to correct for the temperature dependence are provided. KEY POINTS • Postmortem MR quantification is feasible for soft tissue discrimination and characterization • Temperature dependence of the T1 values challenges the MR quantification approach • The results provide the basis for computer-aided postmortem MRI diagnosis • Diagnostic criteria may also be applied for living patients.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cardiac tissue engineering approaches can deliver large numbers of cells to the damaged myocardium and have thus increasingly been considered as a possible curative treatment to counteract the high prevalence of progressive heart failure after myocardial infarction (MI). Optimal scaffold architecture and mechanical and chemical properties, as well as immune- and bio-compatibility, need to be addressed. We demonstrated that radio-frequency plasma surface functionalized electrospun poly(ɛ-caprolactone) (PCL) fibres provide a suitable matrix for bone-marrow-derived mesenchymal stem cell (MSC) cardiac implantation. Using a rat model of chronic MI, we showed that MSC-seeded plasma-coated PCL grafts stabilized cardiac function and attenuated dilatation. Significant relative decreases of 13% of the ejection fraction (EF) and 15% of the fractional shortening (FS) were observed in sham treated animals; respective decreases of 20% and 25% were measured 4 weeks after acellular patch implantation, whereas a steadied function was observed 4 weeks after MSC-patch implantation (relative decreases of 6% for both EF and FS).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Atenolol is a highly prescribed anti-hypertensive pharmaceutical and a member of the group of β-blockers. It has been detected at concentrations ranging from ng L(-1) to low μg L(-1) in waste and surface waters. The present study aimed to assess the sub-lethal effects of atenolol on rainbow trout (Oncorhynchus mykiss) and to determine its tissue-specific bioconcentration. Juvenile rainbow trout were exposed for 21 and 42 days to three concentration levels of atenolol (1 μg L(-1) - environmentally relevant concentration, 10 μg L(-1), and 1000 μg L(-1)). The fish exposed to 1 μg L(-1) atenolol exhibited a higher lactate content in the blood plasma and a reduced haemoglobin content compared with the control. The results show that exposure to atenolol at concentrations greater than or equal to 10 μg L(-1) significantly reduces both the haematocrit value and the glucose concentration in the blood plasma. The activities of the studied antioxidant enzymes (catalase and superoxide dismutase) were not significantly affected by atenolol exposure, and only the highest tested concentration of atenolol significantly reduced the activity of glutathione reductase. The activities of selected CYP450 enzymes were not affected by atenolol exposure. The histological changes indicate that atenolol has an effect on the vascular system, as evidenced by the observed liver congestion and changes in the pericardium and myocardium. Atenolol was found to have a very low bioconcentration factor (the highest value found was 0.27). The bioconcentration levels followed the order liver>kidney>muscle. The concentration of atenolol in the blood plasma was below the limit of quantification (2.0 ng g(-1)). The bioconcentration factors and the activities of selected CYP450 enzymes suggest that atenolol is not metabolised in the liver and may be excreted unchanged.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

AIMS CO₂ is an intrinsic vasodilator for cerebral and myocardial blood vessels. Myocardial vasodilation without a parallel increase of the oxygen demand leads to changes in myocardial oxygenation. Because apnoea and hyperventilation modify blood CO₂, we hypothesized that voluntary breathing manoeuvres induce changes in myocardial oxygenation that can be measured by oxygenation-sensitive cardiovascular magnetic resonance (CMR). METHODS AND RESULTS Fourteen healthy volunteers were studied. Eight performed free long breath-hold as well as a 1- and 2-min hyperventilation, whereas six aquatic athletes were studied during a 60-s breath-hold and a free long breath-hold. Signal intensity (SI) changes in T₂*-weighted, steady-state free precession, gradient echo images at 1.5 T were monitored during breathing manoeuvres and compared with changes in capillary blood gases. Breath-holds lasted for 35, 58 and 117 s, and hyperventilation for 60 and 120 s. As expected, capillary pCO₂ decreased significantly during hyperventilation. Capillary pO₂ decreased significantly during the 117-s breath-hold. The breath-holds led to a SI decrease (deoxygenation) in the left ventricular blood pool, while the SI of the myocardium increased by 8.2% (P = 0.04), consistent with an increase in myocardial oxygenation. In contrast, hyperventilation for 120 s, however, resulted in a significant 7.5% decrease in myocardial SI/oxygenation (P = 0.02). Change in capillary pCO₂ was the only independently correlated variable predicting myocardial oxygenation changes during breathing manoeuvres (r = 0.58, P < 0.01). CONCLUSION In healthy individuals, breathing manoeuvres lead to changes in myocardial oxygenation, which appear to be mediated by CO₂. These changes can be monitored in vivo by oxygenation-sensitive CMR and thus, may have value as a diagnostic tool.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

AIM The autonomic innervation of the heart consists of sympathetic and parasympathetic nerve fibres, and fibres of the intrinsic ganglionated plexus with noradrenaline and acytylcholine as principal neurotransmitters. The fibres co-release neuropeptides to modulate intracardiac neurotransmission by specific presynaptic and postsynaptic receptors. The coexpression of angiotensin II in sympathetic fibres of the human heart and its role are not known so far. METHODS Autopsy specimens of human hearts were studied (n=3; ventricles). Using immunocytological methods, cryostat sections were stained by a murine monoclonal antibody (4B3) directed against angiotensin II and co-stained by polyclonal antibodies against tyrosine hydroxylase, a catecholaminergic marker. Visualisation of the antibodies was by confocal light microscopy or laser scanning microscopy. RESULTS Angiotensin II-positive autonomic fibres with and without a catecholaminergic cophenotype (hydroxylase-positive) were found in all parts of the human ventricles. In the epicardium, the fibres were grouped in larger bundles of up to 100 and more fibres. They followed the preformed anatomic septa and epicardial vessels towards the myocardium and endocardium where the bundles dissolved and the individual fibres spread between myocytes and within the endocardium. Generally, angiotensinergic fibres showed no synaptic enlargements or only a few if they were also catecholaminergic. The exclusively catechalominergic fibres were characterised by multiple beaded synapses. CONCLUSION The autonomic innervation of the human heart contains angiotensinergic fibres with a sympathetic efferent phenotype and exclusively angiotensinergic fibers representing probably afferents. Angiotensinergic neurotransmission may modulate intracardiac sympathetic and parasympathetic activity and thereby influence cardiac and circulatory function.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The coronary collateral circulation provides an alternative source of blood supply to myocardium jeopardised by ischaemia. Collaterals enlarge with obstructive coronary artery disease to allow bulk flow, but blood flow deliverable by the native, pre-formed collateral extent can already be sizeable. Genetic determinants contribute significantly to the wide variability observed in both native collateral extent and its capacity to enlarge, and the severity of the coronary stenosis is the most significant environmental determinant for collateral enlargement. The protective effect of a well-developed coronary collateral circulation translates into relevant improvements in all-cause and cardiac mortality in the acute and chronic phases of coronary artery disease, as well as into a reduction of future adverse cardiovascular events.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The epicardium is the mesothelial outer layer of the vertebrate heart. It plays an important role during cardiac development by, among other functions, nourishing the underlying myocardium, contributing to cardiac fibroblasts and giving rise to the coronary vasculature. The epicardium also exerts key functions during injury responses in the adult and contributes to cardiac repair. In this article, we review current knowledge on the cellular and molecular mechanisms underlying epicardium formation in the zebrafish, a teleost fish, which is rapidly gaining status as an animal model in cardiovascular research, and compare it with the mechanisms described in other vertebrate models. We moreover describe the expression patterns of a subset of available zebrafish Wilms' tumor 1 transgenic reporter lines and discuss their specificity, applicability and limitations in the study of epicardium formation.