997 resultados para MPEG-DASH WiFi-Direct Android ExoPlayer Caching DynamicAdaptiveStreaming
Resumo:
We suggest a different practical scheme for the direct detection of pure spin current by using the two-color Faraday rotation of optical quantum interference process (QUIP) in a semiconductor system. We demonstrate theoretically that the Faraday rotation of QUIP depends sensitively on the spin orientation and wave vector of the carriers, and can be tuned by the relative phase and the polarization direction of the omega and 2 omega laser beams. By adjusting these parameters, the magnitude and direction of the spin current can be detected.
Resumo:
A two-color time-resolved Kerr rotation spectroscopy system was built, with a femtosecond Ti:sapphire laser and a photonic crystal fiber, to study coherent spin transfer processes in an InGaAs/GaAs quantum well sample. The femtosecond Ti:sapphire laser plays two roles: besides providing a pump beam with a tunable wavelength, it also excites the photonic crystal fiber to generate supercontinuum light ranging from 500 nm to 1600 nm, from which a probe beam with a desirable wavelength is selected with a suitable interference filter. With such a system, we studied spin transfer processes between two semiconductors of different gaps in an InGaAs/GaAs quantum well sample. We found that electron spins generated in the GaAs barrier were transferred coherently into the InGaAs quantum well. A model based on rate equations and Bloch-Torrey equations is used to describe the coherent spin transfer processes quantitatively. With this model, we obtain an effective electron spin accumulation time of 21 ps in the InGaAs quantum well.
Resumo:
SiO2-TiO2 sol-gel films are deposited on SiO2/Si by dip-coating technique. The SiO2-TiO2 strips are fabricated by laser direct writing using all ytterbium fiber laser and followed by chemical etching. Surface structures, morphologies and roughness of the films and strips are characterized. The experimental results demonstrate that the SiO2-TiO2 sol-gel film is loose in Structure and a shrinkage concave groove forms if the film is irradiated by laser beam. The surface roughness of both non-irradiated and laser irradiated areas increases with the chemical etching time. But the roughness of laser irradiated area increases more than that of non-irradiated area under the same etching time. After being etched for 28 s, the surface roughness value of the laser irradiated area increases from 0.3 nm to 3.1 nm.
Resumo:
Due to the zero dispersion point at 1.3-mu m in optical fibres, 1.3-mu m InGaAsP/InP laser diodes have become main light sources in fibre communication systems recently. In fluences of quantum noises on direct-modulated properties of single-mode 1.3-mu m InGaAsP/InP laser diodes are investigated in this article. Considering the carrier and photon noises and the cross-correlation between the two noises, the power spectrum of the photon density and the signal-to-noise ratio (SNR) of the direct-modulated single-mode laser system are calculated using the linear approximation method. We find that the stochastic resonance (SR) always appears in the dependence of the SNR on the bias current density, and is strongly affected by the cross-correlation coeffcient between the carrier and photon noises, the frequency of modulation signal, and the photon lifetime in the laser cavity. Hence, it is promising to use the SR mechanism to enhance the SNR of direct-modulated InGaAsP/InP laser diodes and improve the quality of optical fibre communication systems.
Resumo:
This paper proposes a novel, fast lock-in, phase-locked loop (PLL) frequency synthesizer. The synthesizer includes a novel mixed-signal voltage-controlled oscillator (VCO) with a direct frequency presetting circuit. The frequency presetting circuit can greatly speed up the lock-in process by accurately the presetting oscillation frequency of the VCO. We fully integrated the synthesizer in standard 0.35 mu m, 3.3 V complementary metal-oxide-semiconductors (CMOS) process. The entire chip area is only 0.4 mm(2). The measured results demonstrate that the synthesizer can speed up the lock-in process significantly and the lock-in time is less than 10 mu s over the entire oscillation frequency range. The measured phase noise of the synthesizer is -85 dBc/Hz at 10 kHz offset. The synthesizer avoids the tradeoff between the lock-in speed and the phase noise/spurs. The synthesizer monitors the chip temperature and automatically compensates for the variation in frequency with temperature.
Resumo:
This paper presents a direct digital frequency synthesizer (DDFS) with a 16-bit accumulator, a fourth-order phase domain single-stage Delta Sigma interpolator, and a 300-MS/s 12-bit current-steering DAC based on the Q(2) Random Walk switching scheme. The Delta Sigma interpolator is used to reduce the phase truncation error and the ROM size. The implemented fourth-order single-stage Delta Sigma noise shaper reduces the effective phase bits by four and reduces the ROM size by 16 times. The DDFS prototype is fabricated in a 0.35-mu m CMOS technology with active area of 1.11 mm(2) including a 12-bit DAC. The measured DDFS spurious-free dynamic range (SFDR) is greater than 78 dB using a reduced ROM with 8-bit phase, 12-bit amplitude resolution and a size of 0.09 mm(2). The total power consumption of the DDFS is 200)mW with a 3.3-V power supply.
Resumo:
Fourth-order spatial interference of entangled photon pairs generated in the process of spontaneous parametric down-conversion pumped by a femtosecond pulse laser has been performed for the first time. In theory, it takes into account the transverse correlation between the two photons and is used to calculate the dependence of the visibility of the interference pattern obtained in Young's double-slit experiment. In this experiment, a short focal length tens and two narrow band interference filters were adopted to eliminate the effects of the broadband pump laser and improve the visibility of the interference pattern under the condition of nearly collinear light and degenerate phase matching.
Resumo:
We have investigated the photo-excited capacitance-voltage (C-V) characteristics as well as the photoluminescence spectra under different biases of a wide quantum well (QW) embedded in an n(+)-i-n(+) double-barrier structure. The pronounced peak feature at zero bias in the C-V spectrum observed upon illumination is regarded as a kind of quantum capacitance related to the quantum confined Stark effect, originating from the spatial separation of the photo-generated electron and hole gas in the QW. This fact is further demonstrated through the comparison between the C-V curve with the PL intensity versus applied voltage relationship under the same excitation. The results may provide us with a more direct and sensitive means in the detection of the separation and accumulation of both types of free carriers-electrons and holes-in low-dimensional semiconductor structures, especially in a new type of optical memory cell.
Resumo:
This paper presents a 5GHz double-balanced mixer with DC-offset cancellation circuit for direct-conversion receiver compliant with IEEE 802.11a wireless LAN standard. The analog feedback loop is used, to eliminate the DC-offset at the output of the double-balanced mixer. The test results show that the mixer with DC-offset cancellation circuit has voltage conversion gain of 9.5dB at 5.15GHz, noise figure of 13.5dB, IIP3 of 7.6 dBm, 1.73mV DC-offset voltage and 67mW power with 3.3-V power supply. The DC-offset cancellation circuit has less than 0.1mm(2) additional area and 0.3mW added power dissipation. The direct conversion WLAN receiver has been implemented in a 0.35 mu m SiGe BiCMOS technology.
Resumo:
A continuous-time 7th-order Butterworth Gm-C low pass filter (LPF) with on-chip automatic tuning circuit has been implemented for a direct conversion DBS tuner in a 0.35um SiGe BiCMOS technology. The filter's -3dB cutoff frequency f(0) can be tuned from 4MHz to 40MHz. A novel translinear transconductor (Gm) cell is used to implement the widely tunable and high linear filter. The filter has -0.5dB passband gain, 28nV/Hz(1/2) input referred noise, -2dBVrms passband IIP3, 24dBVrms stopband IIP3. The I/Q LPFs with the tuning circuit draw 16mA (with f(0)=20MHz) from 3.3 V supply, and occupy an area of 0.45 mm(2).
Resumo:
A compact direct digital frequency synthesizer (DDFS) for system-on-chip (SoC) is developed in this paper. For smaller chip size and lower power consumption, the phase to sine mapping data is compressed by using sine symmetry technique, sine-phase difference technique, quad line approximation (QLA) technique and quantization and error read only memory (QE-ROM) technique. The ROM size is reduced by 98 % using the techniques mentioned above. A compact DDFS chip with 32-bit phase storage depth and a 10-bit on-chip digital to analog converter(DAC) has been successfully implemented using standard 0.35um CMOS process. The core area of the DDFS is 1.6mm(2). It consumes 167 mW at 3.3V, and its spurious free dynamic range (SFDR) is 61dB.
Resumo:
A novel low temperature direct wafer bonding technology employing vacuum-cavity pre-bonding is proposed and applied in bonding of InGaAs/Si couple wafers under 300 degrees C and InP/GaAs couple wafers under 350 degrees C. Aligning accuracy of 0.5 mu m is achieved. During wafer bonding process the pressure on the couple wafers is 10MPa. The interface energy is sufficiently high to allow thinning of the wafers down from 350um to about 100um. And the tensile strength test indicates the bonding energy of bonded samples is about equal to the bonded samples at 550 degrees C.
Resumo:
A DC-offset cancellation scheme in the 5GHz direct-conversion receiver compliant with IEEE 802.11a wireless LAN standard is described in this paper. It uses the analog feedback loop to eliminate the DC-offset at the output of the double-balanced mixer. The mixer has a simulation voltage conversion gain of IMB at 5.2GHz, noise figure of 9.67dB, IIP3 of 7.6dBm. The solution provides 39.1dB reduction according to the leakage value at LO and mixer load resistors, the additional noise figure added to mixer is less than 0.9dB, the added power dissipation is 0.1mW and was fabricated in 60GHz 0.35 mu m SiGe BiCMOS technology.
Resumo:
This paper presents a direct digital frequency synthesizer (DDFS) with a 16-bit accumulator, a 4th-order single-stage pipelined delta-sigma interpolator and a 300MS/s 12-bit current-steering DAC based on Q(2) Random Walk switching scheme. The delta-sigma interpolator is used to reduce the phase truncation error and the ROM size. The measured spurious-free dynamic range (SFDR) is greater than 80 dB for 8-bit phase value and 12-bit sine-amplitude output. The DDFS prototype is fabricated in a 0.35um CMOS technology with core area of 1.11mm(2).
Resumo:
This paper proposes a novel, fast lock-in, phase-locked loop (PLL) frequency synthesizer. The synthesizer includes a novel mixed-signal voltage-controlled oscillator (VCO) with a direct frequency presetting circuit. The frequency presetting circuit can greatly speed up the lock-in process by accurately the presetting oscillation frequency of the VCO. We fully integrated the synthesizer in standard 0.35 mu m, 3.3 V complementary metal-oxide-semiconductors (CMOS) process. The entire chip area is only 0.4 mm(2). The measured results demonstrate that the synthesizer can speed up the lock-in process significantly and the lock-in time is less than 10 mu s over the entire oscillation frequency range. The measured phase noise of the synthesizer is -85 dBc/Hz at 10 kHz offset. The synthesizer avoids the tradeoff between the lock-in speed and the phase noise/spurs. The synthesizer monitors the chip temperature and automatically compensates for the variation in frequency with temperature.