975 resultados para MAMMALIAN SEPTINS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nerve development, which includes axon outgrowth and guidance, is regulated by many protein families, including receptor protein tyrosine phosphatases (RPTP's).Protein tyrosine phosphatase receptor type 0 (PTPRO) is a type III RPTP that is important for axon growth and guidance, as observed in chicks and flies. In order to examine the effects ofPTPRO on mammalian development, standard behavioral tests were used to compare mice lacking the gene for PTPRO (ROKO mice) to wild-type (WT) mice. The ROKO mice showed a significant delay in reacting to a thermal noxious stimulus, hotplate analgesia, when compared to the WT mice suggesting deficient nociceptive function. In a rotarod test for proprioceptive function the ROKO mice exhibited a significant decrease in the amount of time spent on the rotating rod than did the WT mice. Additional proprioception tests were performed including the climb, step reflex, beam, and mesh walk tests. In the climb and step (place) test, the ROKO group had a significantly lower accuracy in performing the tests than did the WT mice. Thus, mice lacking the PTPRO gene showed behavioral deficiencies that reflect impairment in sensory function, specifically for nociception and proprioception.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Metabolic flexibility may be generally defined as “the capacity for the organism to adapt fuel oxidation to fuel availability”. The metabolic diversification strategies used by individual bacteria vary greatly from the use of novel or acquired enzymes to the use of plasmid-localised genes and transporters. In this review, we describe the ability of lactobacilli to utilise a variety of carbon sources from their current or new environments in order to grow and survive. The genus Lactobacillus now includes more than 150 species, many with adaptive capabilities, broad metabolic capacity and species/strain variance. They are therefore, an informative example of a cell factory capable of adapting to new niches with differing nutritional landscapes. Indeed, lactobacilli naturally colonise and grow in a wide variety of environmental niches which include the roots and foliage of plants, silage, various fermented foods and beverages, the human vagina and the mammalian gastrointestinal tract (GIT; including the mouth, stomach, small intestine and large intestine). Here we primarily describe the metabolic flexibility of some lactobacilli isolated from the mammalian gastrointestinal tract, and we also describe some of the food-associated species with a proven ability to adapt to the GIT. As examples this review concentrates on the following species - Lb. plantarum, Lb. acidophilus, Lb. ruminis, Lb. salivarius, Lb. reuteri and Lb. sakei, to highlight the diversity and inter-relationships between the catabolic nature of species within the genus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives: Characterize the role of protein kinase WNK1 in the phosphorylation network regulating cellular glucose uptake

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, Dicentrarchus labrax encephalitis virus (DIEV), which causes sea bass encephalitis, was propagated in cell culture, thus allowing study of its lytic cycle, DIEV infection of mammalian and fish cells induced different patterns of expression of capsid proteins, which were assembled as virus-like particles, accumulating in the cytoplasm either as diffuse masses or in vesicles, as shown by electron microscopy, These particles correspond to virions, as shown by their ability to induce Secondary infection, Fish cells proved to be more permissive for DIEV than mammalian cells, although virus yield remained low, RNA analysis of infected sea bass cells revealed DIEV RNA3, in addition to genomic RNA1 and RNA2, and the presence of the RNA;! minus strand, thus demonstrating the replication of the DIEV genome, In addition, DIEV RNA-dependent RNA polymerase was associated with mature virions even after purification by a CsCl gradient, but it was dissociated when capsids were destabilized, In addition to providing more information about the relatedness of DIEV to the members of the family Nodaviridae, this study shows that fish nodaviruses may not be able to infect as wide a variety of cells as insect nodaviruses can.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Silver nanoparticles are widely used for many applications. In this study silver nanoparticles have been tested for their toxic effect on fibroblasts (NIH-3T3), on a human lung adenocarcinoma epithelial cell line (A-549), on PC-12-cells, a rat adrenal pheochromocytoma cell line, and on HEP-G2-cells, a human hepatocellular carcinoma cell line. The viability of the cells cultivated with different concentrations of silver was determined by the MTT assay, a photometric method to determine cell metabolism. Dose-response curves were extrapolated and IC50, total lethal concentration (TLC), and no observable adverse effect concentration (NOAEC) values were calculated for each cell line. As another approach, ECIS (electric-cell-substrate-impedance-sensing) an automated method to monitor cellular behavior in real-time was applied to observe cells cultivated with silver nanoparticles. To identify the type of cell death the membrane integrity was analyzed by measurements of the lactate dehydrogenase releases and by determination of the caspase 3/7 activity. To ensure that the cytotoxic effect of silver nanoparticles is not traced back to the presence of Ag+ ions in the suspension, an Ag+ salt (AgNO3) has been examined at the same concentration of Ag+ present in the silver nanoparticle suspension that is assuming that the Ag particles are completely available as Ag+ ions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Monoclonal antibodies are a class of therapeutic that is an expanding area of the lucrative biopharmaceutical industry. These complex proteins are predominantly produced from large cultures of mammalian cells; the industry standard cell line being Chinese Hamster Ovary (CHO) cells. A number of optimisation strategies have led to antibody titres from CHO cells increasing by a hundred-fold, and it has been proposed that a further bottleneck in biosynthesis is in protein folding and assembly within the secretory pathway. To alleviate this bottleneck, a CHO-derived host cell line was generated by researchers at the pharmaceutical company UCB that stably overexpressed two critical genes: XBP1, a transcription factor capable of expanding the endoplasmic reticulum and upregulating protein chaperones; and Ero1α, an oxidase that replenishes the machinery of disulphide bond formation. This host cell line, named CHO-S XE, was confirmed to have a high yield of secreted antibody. The work presented in this thesis further characterises CHO-S XE, with the aim of using the information gained to lead the generation of novel host cell lines with more optimal characteristics than CHO-S XE. In addition to antibodies, it was found that CHO-S XE had improved production of two other secreted proteins: one with a simple tertiary structure and one complex multi-domain protein; and higher levels of a number of endogenous protein chaperones. As a more controlled system of gene expression to unravel the specific roles of XBP1 and Ero1α in the secretory properties of CHO-S XE, CHO cells with inducible overexpression of XBP1, Ero1α, or a third gene involved in the Unfolded Protein Response, GADD34, were generated. From these cell lines, it was shown that more antibody was secreted by cells with induced overexpression of XBP1; however, Ero1α and GADD34 overexpression did not improve antibody yield. Further investigation revealed that endogenous XBP1 splicing was downregulated in the presence of an abundance of the active form of XBP1. This result indicated a novel aspect of the regulation of the activity of IRE1, the stress-induced endoribonuclease responsible for XBP1 splicing. Overall, the work described in this thesis confirms that the overexpression of XBP1 has an enhancing effect on the secretory properties of CHO cells; information which could contribute to the development of host cells with a greater capacity for antibody production.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The wide use of glyphosate-based herbicides (GBHs) has become a controversial issue due to the potential harmful effects on human health. Commercial formulations, among which Roundup is the most famous one, contain a number of adjuvants inside; most of these are patented and not publicly known, therefore, they can act differently from glyphosate alone and might strengthen its toxic effect. Our study is focused on GBHs reproductive toxicity with a special regard to glyphosate and Roundup impact on male and female mammalian gametes after exposure to concentrations ranging from the one recommended for agricultural use (0.1% Roundup, containing 360 µg/mL glyphosate) to 70-fold lower or more. Sperm quality analysis, either on boar and stallion, showed that Roundup has much more detrimental impact than glyphosate at equivalent concentrations on spermatozoa function and survival. Basing on our results, the toxic effect of these pesticides on spermatozoa may be linked to an impairment in mitochondrial activity and a subsequent decrease in ATP production and/or alterations in the redox balance, which impact cell motility and plasma membrane stability. Moreover, a different species sensitivity to GBHs may exists as high doses of glyphosate affected sperm quality only in boar and not in stallion; furthermore, Roundup had deleterious effects at lower doses in the first compared to the latter. With regard to female gametes, we found that glyphosate and Roundup exposure during IVM detrimentally affect the subsequent developmental ability of swine embryos, providing further evidence of their potential toxic effect on female reproductive system. In addition, Roundup altered steroidogenesis and increased oocyte ROS levels. Therefore, according to our results, we can conclude that GBHs exert a negative impact on both male and female gametes and that Roundup adjuvants enhance glyphosate toxic effects and/or are biologically active in their side-effect.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Disorders of sex development (DSD) involve several conditions that result from abnormalities during gonadal determination and differentiation. Some of these disorders may manifest at birth by ambiguous genitalia; others are diagnosed only at puberty, by the delayed onset of secondary sexual characteristics. Sex determination and differentiation in humans are processes that involve the interaction of several genes such as WT1, NR5A1, NR0B1, SOX9, among others, in the testicular pathway, and WNT4, DAX1, FOXL2 and RSPO1, in the ovarian pathway. One of the major proteins in mammalian gonadal differentiation is the steroidogenic nuclear receptor factor 1 (SF1). This review will cover some of the most recent data on SF1 functional roles and findings related to mutations in its coding gene, NR5A1.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The parasitic protozoan Leishmania (Leishmania) amazonensis alternates between mammalian and insect hosts. In the insect host, the parasites proliferate as procyclic promastigotes andthen differentiate into metacyclic infective forms. The meta 1 gene is preferentially expressed during metacyclogenesis. Meta 1 expression profile determination along parasite growth curves revealed that the meta 1 mRNA level peaked at the early stationary phase then decreased to an intermediate level. No correlation was observed between meta 1 expression and infectivity. Conversely, infectivity correlated with the increase of apoptotic cells in the late stationary phase.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Os ecossistemas florestais do Brasil abrigam um dos mais altos níveis de diversidade de mamíferos da Terra, e boa parte dessa diversidade se encontra nas áreas legalmente protegidas em áreas de domínio privado. As reservas legais (RLs) e áreas de proteção permanente (APPs) representam estratégias importantes para a proteção e manutenção dessa diversidade. Mudanças propostas no Código Florestal certamente trarão efeitos irreversíveis para a diversidade de mamíferos no Brasil. Os mamíferos apresentam papéis-chave nos ecossistemas, atuando como polinizadores e dispersores de sementes. A extinção local de algumas espécies pode reduzir os serviços ecológicos nas RLs e APPs. Outra consequência grave da redução de áreas de vegetação nativa caso a mudança no Código Florestal seja aprovada será o aumento no risco de transmição de doenças, trazendo sério problemas a saúde pública no Brasil.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The generation of bradykinin (BK; Arg-Pro-Pro-Gly-Phe-Ser-Pro-Phe-Arg) in blood and kallidin (Lys-BK) in tissues by the action of the kallikrein-kinin system has received little attention in non-mammalian vertebrates. In mammals, kallidin can be generated by the coronary endothelium and myocytes in response to ischemia, mediating cardioprotective events. The plasma of birds lacks two key components of the kallikrein-kinin system: the low molecular weight kininogen and a prekallikrein activator analogous to mammalian factor XII, but treatment with bovine plasma kallikrein generates ornitho-kinin [Thr6,Leu8]-BK. The possible cardioprotective effect of ornitho-kinin infusion was investigated in an anesthetized, open-chest chicken model of acute coronary occlusion. A branch of the left main coronary artery was reversibly ligated to produce ischemia followed by reperfusion, after which the degree of myocardial necrosis (infarct size as a percent of area at risk) was assessed by tetrazolium staining. The iv injection of a low dose of ornitho-kinin (4 µg/kg) reduced mean arterial pressure from 88 ± 12 to 42 ± 7 mmHg and increased heart rate from 335 ± 38 to 402 ± 45 bpm (N = 5). The size of the infarct was reduced by pretreatment with ornitho-kinin (500 µg/kg infused over a period of 5 min) from 35 ± 3 to 10 ± 2% of the area at risk. These results suggest that the physiological role of the kallikrein-kinin system is preserved in this animal model in spite of the absence of two key components, i.e., low molecular weight kininogen and factor XII.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Since the discovery of Trypanosoma cruzi and the brilliant description of the then-referred to "new tripanosomiasis" by Carlos Chagas 100 years ago, a great deal of scientific effort and curiosity has been devoted to understanding how this parasite invades and colonises mammalian host cells. This is a key step in the survival of the parasite within the vertebrate host, and although much has been learned over this century, differences in strains or isolates used by different laboratories may have led to conclusions that are not as universal as originally interpreted. Molecular genotyping of the CL-Brener clone confirmed a genetic heterogeneity in the parasite that had been detected previously by other techniques, including zymodeme or schizodeme (kDNA) analysis. T. cruzi can be grouped into at least two major phylogenetic lineages: T. cruzi I, mostly associated with the sylvatic cycle and T. cruzi II, linked to human disease; however, a third lineage, T. cruziIII, has also been proposed. Hybrid isolates, such as the CL-Brener clone, which was chosen for sequencing the genome of the parasite (Elias et al. 2005, El Sayed et al. 2005a), have also been identified. The parasite must be able to invade cells in the mammalian host, and many studies have implicated the flagellated trypomastigotes as the main actor in this process. Several surface components of parasites and some of the host cell receptors with which they interact have been described. Herein, we have attempted to identify milestones in the history of understanding T. cruzi- host cell interactions. Different infective forms of T. cruzi have displayed unexpected requirements for the parasite to attach to the host cell, enter it, and translocate between the parasitophorous vacuole to its final cytoplasmic destination. It is noteworthy that some of the mechanisms originally proposed to be broad in function turned out not to be universal, and multiple interactions involving different repertoires of molecules seem to act in concert to give rise to a rather complex interplay of signalling cascades involving both parasite and cellular components.