991 resultados para Land classification
Resumo:
Report on the Iowa Department of Agriculture and Land Stewardship for the year ended June 30, 2007
Resumo:
Different types of cell death are often defined by morphological criteria, without a clear reference to precise biochemical mechanisms. The Nomenclature Committee on Cell Death (NCCD) proposes unified criteria for the definition of cell death and of its different morphologies, while formulating several caveats against the misuse of words and concepts that slow down progress in the area of cell death research. Authors, reviewers and editors of scientific periodicals are invited to abandon expressions like 'percentage apoptosis' and to replace them with more accurate descriptions of the biochemical and cellular parameters that are actually measured. Moreover, at the present stage, it should be accepted that caspase-independent mechanisms can cooperate with (or substitute for) caspases in the execution of lethal signaling pathways and that 'autophagic cell death' is a type of cell death occurring together with (but not necessarily by) autophagic vacuolization. This study details the 2009 recommendations of the NCCD on the use of cell death-related terminology including 'entosis', 'mitotic catastrophe', 'necrosis', 'necroptosis' and 'pyroptosis'.
Resumo:
Want to know what conditions to expect over the next stage of RAGBRAI? How hilly will it be, what towns and parks are between here and there, or what services are coming up in the next town?
Resumo:
On today’s ride we continue riding across the Southern Iowa Drift Plain. This landform region covers over 40% of the state and comprises most of southern Iowa. Over the last several million years Iowa was subjected to at least seven glacial advances. The last of these older advances occurred approximately 500,000 years ago. Since then the landscape has been subjected to stream erosion and from12,500-24,000 years ago was mantled with a thick blanket of loess before being further eroded.
Resumo:
Although during much of its geologic history Iowa was part of an interior sea, today what we see on the land surface has been heavily influenced by recent glaciation. Everything from Iowa soils, rivers, lakes, and hills has been influenced by glaciation. Most of Iowa’s bedrock is hidden beneath a thick mantle of deposits from the Cenozoic (i.e., new life) Era, spanning the last 65 million years. Geologists have divided the Cenozoic Era into two periods. These are the Tertiary (1.8-65 million years ago) and Quaternary Periods (recent to 1.8 million years ago). Most geologic records in Iowa are from the Quaternary period, and include glacial till and loess.
Resumo:
Today’s ride departs Ames and heads towards Nevada. The Ames area is one of the classic areas to view elongated hummocks. These landforms are discontinous, lower relief curvilinear ridges which are east-west trending features. At one time geologists thought these hummocks formed at the base of the glacier due to glacial movement. It is now understood that these features may have developed within the glacier, in a large crevasse field that formed behind the ice (Bemis Moraine) margin as the ice stagnated and melted.
Resumo:
Today, after you descend into the valley of the Iowa River north of Marengo, the route turns east on county road F15 and approaches the historic Amana Society. Settled in the late 1850s by German immigrants of the Community of True Inspiration, the new arrivals utilized the local timber and stone resources to construct their buildings. During these early years several stone quarries were opened in the hills along the north wall of the Iowa River valley near East, Middle, and West Amana. Riders will pass close to one of these old quarries 0.7 miles west of West Amana. The stone taken from these quarries is beautiful quartz-rich sandstone that is cemented by light brown to orange tinged iron oxide. This stone was used in the construction of many buildings in Amana.
Resumo:
Today you will be biking over the Iowa and Cedar rivers, two major rivers hit by the Iowa flood of 2008. Three miles northeast of North Liberty you’ll cross the Iowa River. The river crested on June 15, 2008 at a record 31.53 ft., three feet higher than the previous record during the flood of 1993. The flooding river caused extensive damage to the University of Iowa (see cover photo of Iowa Memorial Union taken by Univ. Relations, Univ. of Iowa), Coralville, and numerous smaller towns. The flooding of the Cedar River, which RAGBRAI will cross at Sutliff, caused even greater damage. At Cedar Rapids, the 2008 flood crest of 31.12 ft. was over 11 ft. higher than the previous record set in 1851! This massive amount of water inundated downtown Cedar Rapids, Palo, and Columbus Junction and caused massive damage to buildings and infrastructure. When crossing the Cedar River at Sutliff, be sure to look to your right to see the remains of the Historic Sutliff Bridge, one of the many casualties of the Iowa flood of 2008.
Resumo:
Iowa’s land was mapped long before it was declared a state. Since Lewis and Clark published their journey across the North American west in 1814, many different uses for maps have been found. Today there are maps of Iowa’s roads, waterways, landscape features, geology, and land use. One of the more recent mapping efforts has involved using a technology called LiDAR. This technology creates a topographic map of Iowa’s elevation that is accurate to within eight inches, ten times higher resolution than in previous elevation maps.
Resumo:
To be diagnostically useful, structural MRI must reliably distinguish Alzheimer's disease (AD) from normal aging in individual scans. Recent advances in statistical learning theory have led to the application of support vector machines to MRI for detection of a variety of disease states. The aims of this study were to assess how successfully support vector machines assigned individual diagnoses and to determine whether data-sets combined from multiple scanners and different centres could be used to obtain effective classification of scans. We used linear support vector machines to classify the grey matter segment of T1-weighted MR scans from pathologically proven AD patients and cognitively normal elderly individuals obtained from two centres with different scanning equipment. Because the clinical diagnosis of mild AD is difficult we also tested the ability of support vector machines to differentiate control scans from patients without post-mortem confirmation. Finally we sought to use these methods to differentiate scans between patients suffering from AD from those with frontotemporal lobar degeneration. Up to 96% of pathologically verified AD patients were correctly classified using whole brain images. Data from different centres were successfully combined achieving comparable results from the separate analyses. Importantly, data from one centre could be used to train a support vector machine to accurately differentiate AD and normal ageing scans obtained from another centre with different subjects and different scanner equipment. Patients with mild, clinically probable AD and age/sex matched controls were correctly separated in 89% of cases which is compatible with published diagnosis rates in the best clinical centres. This method correctly assigned 89% of patients with post-mortem confirmed diagnosis of either AD or frontotemporal lobar degeneration to their respective group. Our study leads to three conclusions: Firstly, support vector machines successfully separate patients with AD from healthy aging subjects. Secondly, they perform well in the differential diagnosis of two different forms of dementia. Thirdly, the method is robust and can be generalized across different centres. This suggests an important role for computer based diagnostic image analysis for clinical practice.
Resumo:
Saving our science from ourselves: the plight of biological classification. Biological classification ( nomenclature, taxonomy, and systematics) is being sold short. The desire for new technologies, faster and cheaper taxonomic descriptions, identifications, and revisions is symptomatic of a lack of appreciation and understanding of classification. The problem of gadget-driven science, a lack of best practice and the inability to accept classification as a descriptive and empirical science are discussed. The worst cases scenario is a future in which classifications are purely artificial and uninformative.
Resumo:
In Switzerland, the issue of land consumption has made it to the front of the political agenda in recent years. Studies conducted on a national level have concluded that there is an excess of land zoned for construction (ARE, 2008), which is seen as contributing to urban sprawl. This situation is looked upon as a failure of the Federal Law on Spatial Planning (LAT, 1979) and there is a political push to change it in order to reinforce zoning regulations. In this article, we look on the issue from a different angle. While there may be large quantities of land zoned for construction, in many urban areas land actually available for development is scarce. Building on the idea that planning's efficiency is linked to its capacity of influencing actual land-use, we focus on how this situation can be dealt with within the current Swiss institutional context.
Resumo:
The classical binary classification problem is investigatedwhen it is known in advance that the posterior probability function(or regression function) belongs to some class of functions. We introduceand analyze a method which effectively exploits this knowledge. The methodis based on minimizing the empirical risk over a carefully selected``skeleton'' of the class of regression functions. The skeleton is acovering of the class based on a data--dependent metric, especiallyfitted for classification. A new scale--sensitive dimension isintroduced which is more useful for the studied classification problemthan other, previously defined, dimension measures. This fact isdemonstrated by performance bounds for the skeleton estimate in termsof the new dimension.
Resumo:
This paper analyzes the choice of the socially optimal titling systemassuming rational individual choices about recording, assurance andregistration decisions. It focuses on the enforcement of propertyrights on land under private titling and the two existing publictitling systems, recording and registration. When the reduction in theexpected costs of eviction compensates the higher cost of initialregistration, it is more efficient to introduce a registration systemrather than a recording system. The development of private "titleassurance" improves the standing of recording as compared toregistration. This improvement depends, however, on the efficiency ofthe assurance technology and, also, on corrective taxation that isneeded to align individual optimization, which disregards the transferelement in eviction, with social objectives.