901 resultados para Isothermal compressibility
Resumo:
I terreni di Treporti, nella laguna di Venezia, sono caratterizzati da una fitta alternanza di strati con caratteristiche di compressibilità fortemente variabili, pertanto risulta alquanto complessa la determinazione e la scelta di parametri appropriati per la progettazione. La costruzione del terrapieno sperimentale, ed il contemporaneo impiego dell'assestimetro a basi multiple, ha permesso di misurare il comportamento deformativo del terreno in sito e le analisi retrospettive hanno simulato, in base a parametri di tentativo, il comportamento nel tempo dei terreni di fondazione. L'analisi a posteriori delle deformazioni è stata confrontata con le misure effettuate nel corso degli anni precedenti la fase di scarico, mentre oltre questa fase è stata eseguita una previsione confrontata con le tre misure eseguite dopo la fase di scarico, ottenendo in entrambi i casi un buon accordo tra simulazioni e misure. L’aderenza quasi perfetta ottenuta tra le curve ε-t calcolate e le corrispondenti curve ε-t sperimentali, fa ritenere che tutti i parametri geotecnici ottenuti dal modello, rispecchino con buona approssimazione quelli realmente mobilitati dai 40 m di sottosuolo interessati dal carico. Pertanto anche i risultati ottenuti in ordine all'influenza della consolidazione secondaria sugli abbassamenti totali, debbono ritenersi con buona approssimazione vicini al comportamento reale. Il modello è anche in grado di descrivere molto bene i cedimenti dei diversi strati di terreno e quello del piano di posa.
Resumo:
Wave breaking is an important coastal process, influencing hydro-morphodynamic processes such as turbulence generation and wave energy dissipation, run-up on the beach and overtopping of coastal defence structures. During breaking, waves are complex mixtures of air and water (“white water”) whose properties affect velocity and pressure fields in the vicinity of the free surface and, depending on the breaker characteristics, different mechanisms for air entrainment are usually observed. Several laboratory experiments have been performed to investigate the role of air bubbles in the wave breaking process (Chanson & Cummings, 1994, among others) and in wave loading on vertical wall (Oumeraci et al., 2001; Peregrine et al., 2006, among others), showing that the air phase is not negligible since the turbulent energy dissipation involves air-water mixture. The recent advancement of numerical models has given valuable insights in the knowledge of wave transformation and interaction with coastal structures. Among these models, some solve the RANS equations coupled with a free-surface tracking algorithm and describe velocity, pressure, turbulence and vorticity fields (Lara et al. 2006 a-b, Clementi et al., 2007). The single-phase numerical model, in which the constitutive equations are solved only for the liquid phase, neglects effects induced by air movement and trapped air bubbles in water. Numerical approximations at the free surface may induce errors in predicting breaking point and wave height and moreover, entrapped air bubbles and water splash in air are not properly represented. The aim of the present thesis is to develop a new two-phase model called COBRAS2 (stands for Cornell Breaking waves And Structures 2 phases), that is the enhancement of the single-phase code COBRAS0, originally developed at Cornell University (Lin & Liu, 1998). In the first part of the work, both fluids are considered as incompressible, while the second part will treat air compressibility modelling. The mathematical formulation and the numerical resolution of the governing equations of COBRAS2 are derived and some model-experiment comparisons are shown. In particular, validation tests are performed in order to prove model stability and accuracy. The simulation of the rising of a large air bubble in an otherwise quiescent water pool reveals the model capability to reproduce the process physics in a realistic way. Analytical solutions for stationary and internal waves are compared with corresponding numerical results, in order to test processes involving wide range of density difference. Waves induced by dam-break in different scenarios (on dry and wet beds, as well as on a ramp) are studied, focusing on the role of air as the medium in which the water wave propagates and on the numerical representation of bubble dynamics. Simulations of solitary and regular waves, characterized by both spilling and plunging breakers, are analyzed with comparisons with experimental data and other numerical model in order to investigate air influence on wave breaking mechanisms and underline model capability and accuracy. Finally, modelling of air compressibility is included in the new developed model and is validated, revealing an accurate reproduction of processes. Some preliminary tests on wave impact on vertical walls are performed: since air flow modelling allows to have a more realistic reproduction of breaking wave propagation, the dependence of wave breaker shapes and aeration characteristics on impact pressure values is studied and, on the basis of a qualitative comparison with experimental observations, the numerical simulations achieve good results.
Resumo:
The progresses of electron devices integration have proceeded for more than 40 years following the well–known Moore’s law, which states that the transistors density on chip doubles every 24 months. This trend has been possible due to the downsizing of the MOSFET dimensions (scaling); however, new issues and new challenges are arising, and the conventional ”bulk” architecture is becoming inadequate in order to face them. In order to overcome the limitations related to conventional structures, the researchers community is preparing different solutions, that need to be assessed. Possible solutions currently under scrutiny are represented by: • devices incorporating materials with properties different from those of silicon, for the channel and the source/drain regions; • new architectures as Silicon–On–Insulator (SOI) transistors: the body thickness of Ultra-Thin-Body SOI devices is a new design parameter, and it permits to keep under control Short–Channel–Effects without adopting high doping level in the channel. Among the solutions proposed in order to overcome the difficulties related to scaling, we can highlight heterojunctions at the channel edge, obtained by adopting for the source/drain regions materials with band–gap different from that of the channel material. This solution allows to increase the injection velocity of the particles travelling from the source into the channel, and therefore increase the performance of the transistor in terms of provided drain current. The first part of this thesis work addresses the use of heterojunctions in SOI transistors: chapter 3 outlines the basics of the heterojunctions theory and the adoption of such approach in older technologies as the heterojunction–bipolar–transistors; moreover the modifications introduced in the Monte Carlo code in order to simulate conduction band discontinuities are described, and the simulations performed on unidimensional simplified structures in order to validate them as well. Chapter 4 presents the results obtained from the Monte Carlo simulations performed on double–gate SOI transistors featuring conduction band offsets between the source and drain regions and the channel. In particular, attention has been focused on the drain current and to internal quantities as inversion charge, potential energy and carrier velocities. Both graded and abrupt discontinuities have been considered. The scaling of devices dimensions and the adoption of innovative architectures have consequences on the power dissipation as well. In SOI technologies the channel is thermally insulated from the underlying substrate by a SiO2 buried–oxide layer; this SiO2 layer features a thermal conductivity that is two orders of magnitude lower than the silicon one, and it impedes the dissipation of the heat generated in the active region. Moreover, the thermal conductivity of thin semiconductor films is much lower than that of silicon bulk, due to phonon confinement and boundary scattering. All these aspects cause severe self–heating effects, that detrimentally impact the carrier mobility and therefore the saturation drive current for high–performance transistors; as a consequence, thermal device design is becoming a fundamental part of integrated circuit engineering. The second part of this thesis discusses the problem of self–heating in SOI transistors. Chapter 5 describes the causes of heat generation and dissipation in SOI devices, and it provides a brief overview on the methods that have been proposed in order to model these phenomena. In order to understand how this problem impacts the performance of different SOI architectures, three–dimensional electro–thermal simulations have been applied to the analysis of SHE in planar single and double–gate SOI transistors as well as FinFET, featuring the same isothermal electrical characteristics. In chapter 6 the same simulation approach is extensively employed to study the impact of SHE on the performance of a FinFET representative of the high–performance transistor of the 45 nm technology node. Its effects on the ON–current, the maximum temperatures reached inside the device and the thermal resistance associated to the device itself, as well as the dependence of SHE on the main geometrical parameters have been analyzed. Furthermore, the consequences on self–heating of technological solutions such as raised S/D extensions regions or reduction of fin height are explored as well. Finally, conclusions are drawn in chapter 7.
Resumo:
Domestic gas burners are investigated experimentally and numerically in order to further understand the fluid dynamics processes that drive the cooking appliance performances. In particular, a numerical simulation tool has been developed in order to predict the onset of two flame instabilities which may deteriorate the performances of the burner: the flame back and flame lift. The numerical model has been firstly validated by comparing the simulated flow field with a data set of experimental measurements. A prediction criterion for the flame back instability has been formulated based on isothermal simulations without involving the combustion modelization. This analysis has been verified by a Design Of Experiments investigation performed on different burner prototype geometries. On the contrary, the formulation of a prediction criterion regarding the flame lift instability has required the use of a combustion model in the numerical code. In this analysis, the structure and aerodynamics of the flame generated by a cooking appliance has thus been characterized by experimental and numerical investigations, in which, by varying the flow inlet conditions, the flame behaviour was studied from a stable reference case toward a complete blow-out.
Resumo:
Although nickel is a toxic metal for living organisms in its soluble form, its importance in many biological processes recently emerged. In this view, the investigation of the nickel-dependent enzymes urease and [NiFe]-hydrogenase, especially the mechanism of nickel insertion into their active sites, represent two intriguing case studies to understand other analogous systems and therefore to lead to a comprehension of the nickel trafficking inside the cell. Moreover, these two enzymes have been demonstrated to ensure survival and colonization of the human pathogen H. pylori, the only known microorganism able to proliferate in the gastric niche. The right nickel delivering into the urease active site requires the presence of at least four accessory proteins, UreD, UreE, UreF and UreG. Similarly, analogous process is principally mediated by HypA and HypB proteins in the [NiFe]-hydrogenase system. Indeed, HpHypA and HpHypB also have been proposed to act in the activation of the urease enzyme from H. pylori, probably mobilizing nickel ions from HpHypA to the HpUreE-HpUreG complex. A complete comprehension of the interaction mechanism between the accessory proteins and the crosstalk between urease and hydrogenase accessory systems requires the determination of the role of each protein chaperone that strictly depends on their structural and biochemical properties. The availability of HpUreE, HpUreG and HpHypA proteins in a pure form is a pre-requisite to perform all the subsequent protein characterizations, thus their purification was the first aim of this work. Subsequently, the structural and biochemical properties of HpUreE were investigated using multi-angle and quasi-elastic light scattering, as well as NMR and circular dichroism spectroscopy. The thermodynamic parameters of Ni2+ and Zn2+ binding to HpUreE were principally established using isothermal titration calorimetry and the importance of key histidine residues in the process of binding metal ions was studied using site-directed mutagenesis. The molecular details of the HpUreE-HpUreG and HpUreE-HpHypA protein-protein assemblies were also elucidated. The interaction between HpUreE and HpUreG was investigated using ITC and NMR spectroscopy, and the influence of Ni2+ and Zn2+ metal ions on the stabilization of this association was established using native gel electrophoresis, light scattering and thermal denaturation scanning followed by CD spectroscopy. Preliminary HpUreE-HpHypA interaction studies were conducted using ITC. Finally, the possible structural architectures of the two protein-protein assemblies were rationalized using homology modeling and docking computational approaches. All the obtained data were interpreted in order to achieve a more exhaustive picture of the urease activation process, and the correlation with the accessory system of the hydrogenase enzyme, considering the specific role and activity of the involved protein players. A possible function for Zn2+ in the chaperone network involved in Ni2+ trafficking and urease activation is also envisaged.
Resumo:
Relaxor-Ferroelektrika sind wegen ihrer möglichen technischen Anwendungen und vom Standpunkt der Grundlagenforschung als Beispiel für ungeordnete Systeme von wissenschaftlichem Interesse. Trotz zahlreicher experimenteller Untersuchungen sind die mikroskopischen Ursachen ihrer Eigenschaften aber nach wie vor ungeklärt. Im Rahmen dieser Arbeit wurde das Relaxor-Ferroelektrikum Bleimagnesiumniobat-Bleititanat (PMN-10PT) mittels linearer und nichtlinearer dielektrischer Spektroskopie untersucht. Durch Anregung mit starken elektrischen Wechselfeldern konnten mit der Methode des nichtresonanten dielektrischen Lochbrennens frequenzselektiv einzelne spektrale Bereiche aus dem verbreiterten Relaxationsspektrum herausgegriffen und deren Rückrelaxation separat verfolgt werden. Die experimentellen Ergebnisse zeigten, daß eine langlebige dynamische Heterogenität der dipolaren Reorientierung existiert. Durch ihr ausgeprägt nichtergodisches Verhalten zeigen Relaxor-Ferroelektrika starke Alterungseffekte. Die Untersuchung des Alterungsverhaltens der dielektrischen Suszeptibilität zeigte, daß ein Gedächtnis für die bei einer Alterungstemperatur eingenommene Konfiguration bestehen bleibt, sofern die Temperatur nach einer unvollständigen isothermen Alterung nur um einige Grad abgesenkt oder erhöht wurde.Außerdem wurde die induzierte Polarisation bei stochastischen dielektrischen Anregungen mit elektrischen Feldern, die in sehr guter Näherung ein weißes Rauschen darstellten, untersucht. Über die Bildung der Kreuzkorrelationsfunktion zwischen Feld und Polarisation konnte die Impulsantwortfunktion des Systems berechnet werden.Die experimentellen Ergebnisse am Relaxor-Ferroelektrikum PMN-10PT können sehr gut mit einem Modell eines ungeordneten Ferroelektrikums erklärt werden, dessen Domänenwände unordnungsbedingt an sogenannten Pinning-Zentren festhaften.
Resumo:
Nucleic acid biosensors represent a powerful tool for clinical and environmental pathogens detection. For applications such as point-of-care biosensing, it is fundamental to develop sensors that should be automatic, inexpensive, portable and require a professional skill of the user that should be as low as possible. With the goal of determining the presence of pathogens when present in very small amount, such as for the screening of pathogens in drinking water, an amplification step must be implemented. Often this type of determinations should be performed with simple, automatic and inexpensive hardware: the use of a chemical (or nanotechnological) isothermal solution would be desirable. My Ph.D. project focused on the study and on the testing of four isothermal reactions which can be used to amplify the nucleic acid analyte before the binding event on the surface sensor or to amplify the signal after that the hybridization event with the probe. Recombinase polymerase amplification (RPA) and ligation-mediated rolling circle amplification (L-RCA) were investigated as methods for DNA and RNA amplification. Hybridization chain reaction (HCR) and Terminal deoxynucleotidil transferase-mediated amplification were investigated as strategies to achieve the enhancement of the signal after the surface hybridization event between target and probe. In conclusion, it can be said that only a small subset of the biochemical strategies that are proved to work in solution towards the amplification of nucleic acids does truly work in the context of amplifying the signal of a detection system for pathogens. Amongst those tested during my Ph.D. activity, recombinase polymerase amplification seems the best candidate for a useful implementation in diagnostic or environmental applications.
Resumo:
The most relevant thermo-mechanical properties of SiC or C based CFCCs are high strength, high toughness, low weight, high reliability, thermal shock and fatigue resistance. Thanks to these special characteristics, the CFCCs are the best candidates to substitute metals and monolithic ceramics, traditionally employed to realize components in energy, aeronautic and nuclear fields. Among the commonly techniques for the CFCCs production, CVI still represents the most significant one. Its main advantages are the versatility, the high quality deposits and the fact that it is conducted under mild temperature conditions. On the other hand, this technique is quite complex, therefore the set up of all process parameters needs long development time. The main purpose of the present study was to analyze the parameters controlling the CVD and CVI processes. Specifically, deposition and infiltration of SiC and Py-C tests were conducted on non-porous and porous substrates. The experiments were performed with a pilot size Isothermal/Isobaric CVI plant, designed and developed by ENEA. To guarantee the control of the process parameters, a previously optimization of the plant was needed. Changing temperature, pressure, flow rates and methane/hydrogen ratio, the Py-C deposition rate value, for an optimal fibre/matrix interphase thickness, was determined. It was also underlined the hydrogen inhibiting effect over the Py-C deposition rate. Regarding SiC morphologies, a difference between the inner and outer substrate surfaces was observed, as a consequence of a flow rate non-uniformity. In the case of the Cf/C composites development, the key parameter of the CVI process was the gas residence time. In fact, the hydrogen inhibiting effect was evident only with high value of residence time. Furthermore, lower the residence time more homogeneous the Py-C deposition rate was obtained along the reaction chamber axis. Finally, a CVD and CVI theoretical modelling was performed.
Resumo:
In dieser Arbeit wurden isotherme Schnitte der ternären Systeme Ti-Fe-Sb, Zr-Fe-Sb und Nb-Fe-Sb bei 800 bzw. 600 °C untersucht. Die Bildung von vier von den Binärbereichen getrennten ternären Verbindungen im System Ti-Fe-Sb, drei im System Zr-Fe-Sb und einer Verbindung im System Nb-Fe-Sb wurde festgestellt bzw. bestätigt. In den ersten zwei Systemen ist die Bildung von festen Lösungen auf der Basis von binären sowie ternären Phasen stark ausgeprägt. Es wurde die Abhängigkeit des Strukturtyps der Laves-Phasen M(Fe???Sb?)??? (M = Ti, Zr, Nb) von der Elektronenkonzentration und den Atomradien der Komponenten gezeigt. 18 isotype Verbindungen M?Me’???X??? (M = Zr, Hf; M’ = Fe, Co, Ni; X = Sn, Sb, Bi) des geordneten Fe?P-Strukturtyps wurden synthetisiert. Die Untersuchungen der Transporteigenschaften dieser Verbindungen belegen deren metallischen Charakter. Es wurde die Bildung der neuen equiatomen Verbindungen in den Systemen Zr-Cu-Sn und Hf-Cu-Sn der Strukturtypen TiNiSi bzw. LiGaGe und der Verbindung HfFe???Sb des TiNiSi-Strukturtyps festgestellt. Die Transporteigenschaften der Reihe von festen Lösungen V???Ti?FeSb wurden untersucht. Es wurde gezeigt, dass die größte Erhöhung des Seebeck-Koeffizienten bei der kleinen Konzentration der vierten Komponente erreicht wird. Der höchste Wert des Seebeck-Koeffizienten (370 ?V/K bei 380 K) wurde für die Zusammensetzung V????Ti????FeSb festgestellt. Die Serie der quaternären Phasen Sc???Nb???NiSn, ZrNiIn???Sb???, HfNiIn???Sb???, ZrCo???Cu???Sn und HfCo???Cu???Sn. zeigt die Möglichkeit der Phasenbildung der Strukturtypen AlLiSi, LiGaGe bzw. TiNiSi auch im Fall der Abwesenheit einer oder beider ternärer Randverbindungen. Für die Verbindung Sc???Nb???NiSn wurden Halbleitereigenschaften festgestellt. Insgesamt wurde die Kristallstruktur der 25 neuen, zum ersten Mal synthetisierten ternären und quaternären Verbindungen bestimmt. Schlüsselwörter: Phasendiagramm, Phasengleichgewicht, Kristallstruktur, intermetallische Verbindungen, Halb-Heusler-Verbindungen, thermoelektrische Materialien, elektrischer Widerstand, Seebeck-Koeffizient.
Resumo:
Die dieser Arbeit zugrundeliegenden Nanopartikel wurden mittels der Makromonomer-Strategie aus polymerisierbaren Polystyrol-b-Poly(2-vinylpyridin) Oligomeren dargestellt. Die Bürstenpolymere besitzen eine polare PS-Schale und einen polaren Kern (P2VP), dessen Polarität durch Quaternisierung deutlich erhöht werden kann. Die Bürstenpolymere weisen bei Molmassen um 400 - 800 kg/mol einen Teilchendurchmesser von ca. 15 - 20 nm auf. Die Nanopartikel eignen sich dazu, hydrophile Farbstoffe in unpolaren Lösungsmitteln zu solubilisieren. Durch spektroskopische Untersuchungen wurden in Abhängigkeit der chemischen Struktur und der Bürstenpolymere Beladungsgrade von über 1 g Farbstoff pro Gramm Polymer ermittelt. Die Beladung der Nanopartikel folgt hierbei einer nichttrivialen Kinetik, was möglicherweise durch eine wasserinduzierte Überstrukturbildung während der Beladung bedingt ist. Mittels isothermer Titrationskalorimetrie konnten die Wechselwirkungen zwischen polymeren Substrat und niedermolekularen Liganden genauer charakterisiert werden. Teilweise werden hierbei zweistufige Titrationsverläufe und "überstöchiometrische" Beladung der Bürstenpolymere beobachtet. Den Hauptbeitrag zur Wechselwirkung liefert hierbei die exotherme Wechselwirkung zwischen basischen Polymer und saurem Farbstoff. Die hohe Farbstoffbeladung führt zur deutlichen Vergrößerung der einzelnen Nanopartikel, was sowohl in Lösung durch Lichtstreu-Techniken als auch auf Oberflächen mit Hilfe des AFM zu beobachten ist. Durch Untersuchungen mit der analytischen Ultrazentrifuge konnte nachgewiesen werden, dass sich der eingelagerte Farbstoff in einem Polaritäts-abhängigen Gleichgewicht mit der Umgebung steht, er somit auch wieder aus den Nanopartikeln freigesetzt werden kann. Darüberhinaus wurden im Rahmen der Arbeit erste Erfolge bei der Synthese von wasserlöslichen Nanopartikeln mit Poly(2-vinylpyridin)-Kern erzielt. Als hierfür geeignet stellte sich eine Synthesestrategie heraus, bei der zunächst ein Bürstenpolymer mit P2VP-Seitenketten dargestellt und dieses anschließend mit geeignet funktionalisierten Polyethylenoxid-Ketten zum Kern-Schale Teilchen umgesetzt wurde. Neben Untersuchungen zum Mizellisierungsverhalten von PEO-b-P2VP Makromonomeren wurden deren Aggregate in Wasser hinsichtlich ihrer Zelltoxizität durch in-vitro Experimente an C26-Mäusekarzinom-Zellen charakterisiert. Die extrem geringe Toxizität macht das PEO-P2VP System zu einem potentiellen Kandidaten für drug-delivery Anwendungen. Besonders die pH-abhängige Löslichkeitsänderung des Poly(2-vinylpyridin) erscheint hierbei besonders interessant.
Resumo:
In dieser Arbeit werden Quantum-Hydrodynamische (QHD) Modelle betrachtet, die ihren Einsatz besonders in der Modellierung von Halbleiterbauteilen finden. Das QHD Modell besteht aus den Erhaltungsgleichungen für die Teilchendichte, das Momentum und die Energiedichte, inklusive der Quanten-Korrekturen durch das Bohmsche Potential. Zu Beginn wird eine Übersicht über die bekannten Ergebnisse der QHD Modelle unter Vernachlässigung von Kollisionseffekten gegeben, die aus einem Schrödinger-System für den gemischten-Zustand oder aus der Wigner-Gleichung hergeleitet werden können. Nach der Reformulierung der eindimensionalen QHD Gleichungen mit linearem Potential als stationäre Schrödinger-Gleichung werden die semianalytischen Fassungen der QHD Gleichungen für die Gleichspannungs-Kurve betrachtet. Weiterhin werden die viskosen Stabilisierungen des QHD Modells berücksichtigt, sowie die von Gardner vorgeschlagene numerische Viskosität für das {sf upwind} Finite-Differenzen Schema berechnet. Im Weiteren wird das viskose QHD Modell aus der Wigner-Gleichung mit Fokker-Planck Kollisions-Operator hergeleitet. Dieses Modell enthält die physikalische Viskosität, die durch den Kollision-Operator eingeführt wird. Die Existenz der Lösungen (mit strikt positiver Teilchendichte) für das isotherme, stationäre, eindimensionale, viskose Modell für allgemeine Daten und nichthomogene Randbedingungen wird gezeigt. Die dafür notwendigen Abschätzungen hängen von der Viskosität ab und erlauben daher den Grenzübergang zum nicht-viskosen Fall nicht. Numerische Simulationen der Resonanz-Tunneldiode modelliert mit dem nichtisothermen, stationären, eindimensionalen, viskosen QHD Modell zeigen den Einfluss der Viskosität auf die Lösung. Unter Verwendung des von Degond und Ringhofer entwickelten Quanten-Entropie-Minimierungs-Verfahren werden die allgemeinen QHD-Gleichungen aus der Wigner-Boltzmann-Gleichung mit dem BGK-Kollisions-Operator hergeleitet. Die Herleitung basiert auf der vorsichtige Entwicklung des Quanten-Maxwellians in Potenzen der skalierten Plankschen Konstante. Das so erhaltene Modell enthält auch vertex-Terme und dispersive Terme für die Geschwindigkeit. Dadurch bleibt die Gleichspannungs-Kurve für die Resonanz-Tunneldiode unter Verwendung des allgemeinen QHD Modells in einer Dimension numerisch erhalten. Die Ergebnisse zeigen, dass der dispersive Geschwindigkeits-Term die Lösung des Systems stabilisiert.
Resumo:
Over the past years fruit and vegetable industry has become interested in the application of both osmotic dehydration and vacuum impregnation as mild technologies because of their low temperature and energy requirements. Osmotic dehydration is a partial dewatering process by immersion of cellular tissue in hypertonic solution. The diffusion of water from the vegetable tissue to the solution is usually accompanied by the simultaneous solutes counter-diffusion into the tissue. Vacuum impregnation is a unit operation in which porous products are immersed in a solution and subjected to a two-steps pressure change. The first step (vacuum increase) consists of the reduction of the pressure in a solid-liquid system and the gas in the product pores is expanded, partially flowing out. When the atmospheric pressure is restored (second step), the residual gas in the pores compresses and the external liquid flows into the pores. This unit operation allows introducing specific solutes in the tissue, e.g. antioxidants, pH regulators, preservatives, cryoprotectancts. Fruit and vegetable interact dynamically with the environment and the present study attempts to enhance our understanding on the structural, physico-chemical and metabolic changes of plant tissues upon the application of technological processes (osmotic dehydration and vacuum impregnation), by following a multianalytical approach. Macro (low-frequency nuclear magnetic resonance), micro (light microscopy) and ultrastructural (transmission electron microscopy) measurements combined with textural and differential scanning calorimetry analysis allowed evaluating the effects of individual osmotic dehydration or vacuum impregnation processes on (i) the interaction between air and liquid in real plant tissues, (ii) the plant tissue water state and (iii) the cell compartments. Isothermal calorimetry, respiration and photosynthesis determinations led to investigate the metabolic changes upon the application of osmotic dehydration or vacuum impregnation. The proposed multianalytical approach should enable both better designs of processing technologies and estimations of their effects on tissue.
Resumo:
The last decade has witnessed very fast development in microfabrication technologies. The increasing industrial applications of microfluidic systems call for more intensive and systematic knowledge on this newly emerging field. Especially for gaseous flow and heat transfer at microscale, the applicability of conventional theories developed at macro scale is not yet completely validated; this is mainly due to scarce experimental data available in literature for gas flows. The objective of this thesis is to investigate these unclear elements by analyzing forced convection for gaseous flows through microtubes and micro heat exchangers. Experimental tests have been performed with microtubes having various inner diameters, namely 750 m, 510 m and 170 m, over a wide range of Reynolds number covering the laminar region, the transitional zone and also the onset region of the turbulent regime. The results show that conventional theory is able to predict the flow friction factor when flow compressibility does not appear and the effect of fluid temperature-dependent properties is insignificant. A double-layered microchannel heat exchanger has been designed in order to study experimentally the efficiency of a gas-to-gas micro heat exchanger. This microdevice contains 133 parallel microchannels machined into polished PEEK plates for both the hot side and the cold side. The microchannels are 200 µm high, 200 µm wide and 39.8 mm long. The design of the micro device has been made in order to be able to test different materials as partition foil with flexible thickness. Experimental tests have been carried out for five different partition foils, with various mass flow rates and flow configurations. The experimental results indicate that the thermal performance of the countercurrent and cross flow micro heat exchanger can be strongly influenced by axial conduction in the partition foil separating the hot gas flow and cold gas flow.
Resumo:
In der vorliegenden Arbeit werden verschiedene Wassermodelle in sogenannten Multiskalen-Computersimulationen mit zwei Auflösungen untersucht, in atomistischer Auflösung und in einer vergröberten Auflösung, die als "coarse-grained" bezeichnet wird. In der atomistischen Auflösung wird ein Wassermolekül, entsprechend seiner chemischen Struktur, durch drei Atome beschrieben, im Gegensatz dazu wird ein Molekül in der coarse-grained Auflösung durch eine Kugel dargestellt.rnrnDie coarse-grained Modelle, die in dieser Arbeit vorgestellt werden, werden mit verschiedenen coarse-graining Methoden entwickelt. Hierbei kommen hauptsächlich die "iterative Boltzmann Inversion" und die "iterative Monte Carlo Inversion" zum Einsatz. Beides sind struktur-basierte Ansätze, die darauf abzielen bestimmte strukturelle Eigenschaften, wie etwa die Paarverteilungsfunktionen, des zugrundeliegenden atomistischen Systems zu reproduzieren. Zur automatisierten Anwendung dieser Methoden wurde das Softwarepaket "Versatile Object-oriented Toolkit for Coarse-Graining Applications" (VOTCA) entwickelt.rnrnEs wird untersucht, in welchem Maße coarse-grained Modelle mehrere Eigenschaftenrndes zugrundeliegenden atomistischen Modells gleichzeitig reproduzieren können, z.B. thermodynamische Eigenschaften wie Druck und Kompressibilität oder strukturelle Eigenschaften, die nicht zur Modellbildung verwendet wurden, z.B. das tetraedrische Packungsverhalten, welches für viele spezielle Eigenschaft von Wasser verantwortlich ist.rnrnMit Hilfe des "Adaptive Resolution Schemes" werden beide Auflösungen in einer Simulation kombiniert. Dabei profitiert man von den Vorteilen beider Modelle:rnVon der detaillierten Darstellung eines räumlich kleinen Bereichs in atomistischer Auflösung und von der rechnerischen Effizienz des coarse-grained Modells, die den Bereich simulierbarer Zeit- und Längenskalen vergrössert.rnrnIn diesen Simulationen kann der Einfluss des Wasserstoffbrückenbindungsnetzwerks auf die Hydration von Fullerenen untersucht werden. Es zeigt sich, dass die Struktur der Wassermoleküle an der Oberfläche hauptsächlich von der Art der Wechselwirkung zwischen dem Fulleren und Wasser und weniger von dem Wasserstoffbrückenbindungsnetzwerk dominiert wird.rn
Resumo:
Autism Spectrum Disorder (ASD) is a range of early-onset conditions classified as neurodevelopmental disorders, characterized by deficits in social interactions and communication, as well as by restricted interest and repetitive behaviors. Among the proteins associated with this spectrum of disease there are Caspr2, α-NRXN1, NLGN1-4. Caspr2 is involved in the clustering of K+ channels at the juxtaparanodes, where it is proposed to bind TAG-1. Recent works reported a synaptic localization of Caspr2, but little is know on its role in this compartment. NRXNs and their ligand NLGNs, instead, have a well-defined role in the formation and maintenance of synapses. Among the neuroligins, NLGN2 binds NRXNs with the lowest affinity, suggesting that it could have other not yet characterized ligands. The aim of this work was to better characterize the binding of Caspr2 to TAG-1 and to identify new potential binding partner for Caspr2 and NLGN2. Unexpectedly, using Isothermal Titration Calorimetry and co-immunoprecipitation experiments the direct association of the first two proteins could not be verified and the results indicate that the first evidences reporting it were biased by false-positive artifacts. These findings, together with the uncharacterized synaptic localization of Caspr2, made the identification of new potential binding partners for this protein necessary. To find new proteins that associate with Caspr2 and NLGN2, affinity chromatography in tandem with mass spectrometry experiments were performed. Interestingly, about 25 new potential partners were found for these two proteins and NLGN1, that was originally included as a control: 5 of those, namely SFRP1, CLU, APOE, CNTN1 and TNR, were selected for further investigations. Only the association of CLU to NLGN2 was confirmed. In the future, screenings of the remaining candidates have to be carried out and the functional role for the proposed NLGN2-CLU complex has to be studied.