963 resultados para Intelligent transportation systems
Resumo:
The study of algorithms for active vibration control in smart structures is an area of interest, mainly due to the demand for better performance of mechanical systems, such as aircraft and aerospace structures. Smart structures, formed using actuators and sensors, can improve the dynamic performance with the application of several kinds of controllers. This article describes the application of a technique based on linear matrix inequalities (LMI) to design an active control system. The positioning of the actuators, the design of a robust state feedback controller and the design of an observer are all achieved using LMI. The following are considered in the controller design: limited actuator input, bounded output (energy) and robustness to parametric uncertainties. Active vibration control of a flat plate is chosen as an application example. The model is identified using experimental data by an eigensystem realization algorithm (ERA) and the placement of the two piezoelectric actuators and single sensor is determined using a finite element model (FEM) and an optimization procedure. A robust controller for active damping is designed using an LMI framework, and a reduced model with observation and control spillover effects is implemented using a computer. The simulation results demonstrate the efficacy of the approach, and show that the control system increases the damping in some of the modes.
Resumo:
The research trend for harvesting energy from the ambient vibration sources has moved from using a linear resonant generator to a non-linear generator in order to improve on the performance of a linear generator; for example, the relatively small bandwidth, intolerance to mistune and the suitability of the device for low-frequency applications. This article presents experimental results to illustrate the dynamic behaviour of a dual-mode non-linear energy-harvesting device operating in hardening and bi-stable modes under harmonic excitation. The device is able to change from one mode to another by altering the negative magnetic stiffness by adjusting the separation gap between the magnets and the iron core. Results for the device operating in both modes are presented. They show that there is a larger bandwidth for the device operating in the hardening mode compared to the equivalent linear device. However, the maximum power transfer theory is less applicable for the hardening mode due to occurrence of the maximum power at different frequencies, which depends on the non-linearity and the damping in the system. The results for the bi-stable mode show that the device is insensitive to a range of excitation frequencies depending upon the input level, damping and non-linearity.
Resumo:
Bolted joints are a form of mechanical coupling largely used in machinery due to their reliability and low cost. Failure of bolted joints can lead to catastrophic events, such as leaking, train derailments, aircraft crashes, etc. Most of these failures occur due to the reduction of the pre-load, induced by mechanical vibration or human errors in the assembly or maintenance process. This article investigates the application of shape memory alloy (SMA) washers as an actuator to increase the pre-load on loosened bolted joints. The application of SMA washer follows a structural health monitoring procedure to identify a damage (reduction in pre-load) occurrence. In this article, a thermo-mechanical model is presented to predict the final pre-load achieved using this kind of actuator, based on the heat input and SMA washer dimension. This model extends and improves on the previous model of Ghorashi and Inman [2004, "Shape Memory Alloy in Tension and Compression and its Application as Clamping Force Actuator in a Bolted Joint: Part 2 - Modeling," J. Intell. Mater. Syst. Struct., 15:589-600], by eliminating the pre-load term related to nut turning making the system more practical. This complete model is a powerful but complex tool to be used by designers. A novel modeling approach for self-healing bolted joints based on curve fitting of experimental data is presented. The article concludes with an experimental application that leads to a change in joint assembly to increase the system reliability, by removing the ceramic washer component. Further research topics are also suggested.
Resumo:
In development of Synthetic Agents for Education, the doubt still resides about what would be a behavior that could be considered, in fact, plausible for this agent's type, which can be considered as effective on the transmission of the knowledge by the agent and the function of emotions this process. The purpose of this labor has an investigative nature in an attempt to discover what aspects are important for this behavior consistent and practical development of a chatterbot with the function of virtual tutor, within the context of learning algorithms. In this study, we explained the agents' basics, Intelligent Tutoring Systems, bots, chatterbots and how these systems need to provide credibility to report on their behavior. Models of emotions, personality and humor to computational agents are also covered, as well as previous studies by other researchers at the area. After that, the prototype is detailed, the research conducted, a summary of results achieved, the architectural model of the system, vision of computing and macro view of the features implemented.
Resumo:
Several Brazilian commercial gasoline physicochemical parameters, such as relative density, distillation curve (temperatures related to 10%, 50% and 90% of distilled volume, final boiling point and residue), octane numbers (motor and research octane number and anti-knock index), hydrocarbon compositions (olefins, aromatics and saturates) and anhydrous ethanol and benzene content was predicted from chromatographic profiles obtained by flame ionization detection (GC-FID) and using partial least square regression (PLS). GC-FID is a technique intensively used for fuel quality control due to its convenience, speed, accuracy and simplicity and its profiles are much easier to interpret and understand than results produced by other techniques. Another advantage is that it permits association with multivariate methods of analysis, such as PLS. The chromatogram profiles were recorded and used to deploy PLS models for each property. The standard error of prediction (SEP) has been the main parameter considered to select the "best model". Most of GC-FID-PLS results, when compared to those obtained by the Brazilian Government Petroleum, Natural Gas and Biofuels Agency - ANP Regulation 309 specification methods, were very good. In general, all PLS models developed in these work provide unbiased predictions with lows standard error of prediction and percentage average relative error (below 11.5 and 5.0, respectively). (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
This work describes an application of principal component analysis (PCA) on a database of secondary metabolites from the Asteraceae family. The numbers of occurrences of metabolites in 11 chemical classes for the different vibes of the family were used as variables, PCA allows the identification of chemical classes that contribute most to the subgroups classification within the family. Relationships between chemical composition and botanical classification were made. (C) 2001 Elsevier B.V. B.V. All rights reserved.
Resumo:
This paper shows a comparative study between the Artificial Intelligence Problem Solving and the Human Problem Solving. The study is based on the solution by many ways of problems proposed via multiple-choice questions. General techniques used by humans to solve this kind of problems are grouped in blocks and each block is divided in steps. A new architecture for ITS - Intelligent Tutoring System is proposed to support experts' knowledge representation and novices' activities. Problems are represented by a text and feasible answers with particular meaning and form, to be rigorously analyzed by the solver to find the right one. Paths through a conceptual space of states represent each right solution.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Although conventional rotating machines have been largely used to drive underground transportation systems, linear induction motors are also being considered for future applications owing to their indisputable advantages. A mathematical model for the transient behavior analysis of linear induction motors, when operating with constant r.m.s. currents, is presented in this paper. Operating conditions, like phase short-circuit and input frequency variations and also some design characteristics, such as air-gap and secondary resistivity variations, can be considered by means of this modeling. The basis of the mathematical modeling is presented. Experimental results obtained in the laboratory are compared with the corresponding simulations and discussed in this paper.
Resumo:
This paper presents a non-model based technique to detect, locate, and characterize structural damage by combining the impedance-based structural health monitoring technique with an artificial neural network. The impedance-based structural health monitoring technique, which utilizes the electromechanical coupling property of piezoelectric materials, has shown engineering feasibility in a variety of practical field applications. Relying on high frequency structural excitations (typically >30 kHz), this technique is very sensitive to minor structural changes in the near field of the piezoelectric sensors. In order to quantitatively assess the state of structures, multiple sets of artificial neural networks, which utilize measured electrical impedance signals for input patterns, were developed. By employing high frequency ranges and by incorporating neural network features, this technique is able to detect the damage in its early stage and to estimate the nature of damage without prior knowledge of the model of structures. The paper concludes with experimental examples, investigations on a massive quarter scale model of a steel bridge section and a space truss structure, in order to verify the performance of this proposed methodology.
Resumo:
This paper presents some results of the application on Evolvable Hardware (EHW) in the area of voice recognition. Evolvable Hardware is able to change inner connections, using genetic learning techniques, adapting its own functionality to external condition changing. This technique became feasible by the improvement of the Programmable Logic Devices. Nowadays, it is possible to have, in a single device, the ability to change, on-line and in real-time, part of its own circuit. This work proposes a reconfigurable architecture of a system that is able to receive voice commands to execute special tasks as, to help handicapped persons in their daily home routines. The idea is to collect several voice samples, process them through algorithms based on Mel - Ceptrais theory to obtain their numerical coefficients for each sample, which, compose the universe of search used by genetic algorithm. The voice patterns considered, are limited to seven sustained Portuguese vowel phonemes (a, eh, e, i, oh, o, u).
Resumo:
Conventional radiography, using industrial radiographic films, has its days numbered. Digital radiography, recently, has taken its place in various segments of products and services, such as medicine, aerospace, security, automotive, etc. As well as the technological trend, the digital technique has brought proven benefits in terms of productivity, sensitivity, the environment, tools for image treatment, cost reductions, etc. If the weld to be inspected is on a serried product, such as, for example, a pipe, the best option for the use of digital radiography is the plane detector, since its use can reduce the length of the inspection cycle due to its high degree of automation. This work tested welded joints produced with the submerged arc process, which were specially prepared in such a way that it shows small artificial cracks, which served as the basis forcomparing the sensitivity levels of the techniques involved. After carrying out the various experiments, the digital meth odshowed the highest sensitivity for the image quality indicator (IQI) of the wire and also in terms of detecting small discontinuities, indicating that the use of digital radiography using the plane detector had advantages over the conventional technique (Moreira et al. Digital radiography, the use of plane detectors for the inspection of welds in oil pipes and gas pipes.9th COTEQ and XXV National Testing Congress for Non Destructive Testing and Inspection; Salvador, Bahia, Brazil and Bavendiek et al. New digital radiography procedure exceeds film sensitivity considerably in aerospace applications. ECNDT; 2006; Berlin). The works were carried out on the basis of the specifications for oil and gas pipelines, API 5L 2004 edition (American Petroleum Institute. API 5L: specification for line pipe. 4th ed. p. 155; 2004) and ISO 3183 2007 edition (International Organization for Standardization, ISO 3183. Petroleum and gas industries - steel pipes for pi pelines transportation systems. p. 143; 2007). © 2010 Taylor & Francis.
Resumo:
Voice-based user interfaces have been actively pursued aiming to help individuals with motor impairments, providing natural interfaces to communicate with machines. In this work, we have introduced a recent machine learning technique named Optimum-Path Forest (OPF) for voice-based robot interface, which has been demonstrated to be similar to the state-of-the-art pattern recognition techniques, but much faster. Experiments were conducted against Support Vector Machines, Neural Networks and a Bayesian classifier to show the OPF robustness. The proposed architecture provides high accuracy rates allied with low computational times. © 2012 IEEE.
Resumo:
In this paper we propose a fast and an accurate method for fault diagnosis in power transformers by means of Optimum-Path Forest (OPF) classifier. Since we applied Dissolved Gas Analysis (DGA), the samples have been labeled by IEEE/IEC standard, which was further analyzed by OPF and several other well known supervised pattern recognition techniques. The experiments have showed that OPF can achieve high recognition rates with low computational cost. © 2012 IEEE.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)