995 resultados para Infrared laser pulses
Resumo:
We numerically investigate a fiber laser which contains an active fiber along with a dispersion decreasing fiber both operating at normal dispersion. Large-bandwidth pulses are obtained that can be linearly compressed resulting in ultra-short high-energy pulse generation. ©2010 Crown.
Resumo:
Recent theoretical investigations have demonstrated that the stability of mode-locked solution of multiple frequency channels depends on the degree of inhomogeneity in gain saturation. In this paper, these results are generalized to determine conditions on each of the system parameters necessary for both the stability and existence of mode-locked pulse solutions for an arbitrary number of frequency channels. In particular, we find that the parameters governing saturable intensity discrimination and gain inhomogeneity in the laser cavity also determine the position of bifurcations of solution types. These bifurcations are completely characterized in terms of these parameters. In addition to influencing the stability of mode-locked solutions, we determine a balance between cubic gain and quintic loss, which is necessary for existence of solutions as well. Furthermore, we determine the critical degree of inhomogeneous gain broadening required to support pulses in multiple frequency channels. © 2010 Copyright SPIE - The International Society for Optical Engineering.
Resumo:
Different generation modes of all-positive-dispersion all-fibre Yb laser mode-locked due to effect of non-linear polarization evolution are investigated. For the first time we realized in the same laser both generation of single picoseconds pulse train and a newly observed lasing regime where generated are picosecond wave-packets, each being a train of femtosecond sub-pulses. Using both experimental results and numerical modeling we discuss in detail the mechanisms of laser mode-locking and switching of generation regimes and show a strong dependence of output laser characteristics on configuration of polarization controllers. A good qualitative agreement between experimental results and numerical modeling is demonstrated. © 2010 Copyright SPIE - The International Society for Optical Engineering.
Resumo:
We have investigated a hybrid mode-locked Erbium-doped fibre ring laser without optical isolator. Creating different losses in the cavity for counter-propagating pulses via net birefringence adjusting, the laser can operate in both unidirectional regimes with extinction over 22 dB, as well as can establish stable bidirectional generation.
Resumo:
The Duke Free-electron laser (FEL) system, driven by the Duke electron storage ring, has been at the forefront of developing new light source capabilities over the past two decades. In 1999, the Duke FEL demonstrated the first lasing of a storage ring FEL in the vacuum ultraviolet (VUV) region at $194$ nm using two planar OK-4 undulators. With two helical undulators added to the outboard sides of the planar undulators, in 2005 the highest FEL gain ($47.8\%$) of a storage ring FEL was achieved using the Duke FEL system with a four-undulator configuration. In addition, the Duke FEL has been used as the photon source to drive the High Intensity $\gamma$-ray Source (HIGS) via Compton scattering of the FEL beam and electron beam inside the FEL cavity. Taking advantage of FEL's wavelength tunability as well as the adjustability of the energy of the electron beam in the storage ring, the nearly monochromatic $\gamma$-ray beam has been produced in a wide energy range from $1$ to $100$ MeV at the HIGS. To further push the FEL short wavelength limit and enhance the FEL gain in the VUV regime for high energy $\gamma$-ray production, two additional helical undulators were installed in 2012 using an undulator switchyard system to allow switching between the two planar and two helical undulators in the middle section of the FEL system. Using different undulator configurations made possible by the switchyard, a number of novel capabilities of the storage ring FEL have been developed and exploited for a wide FEL wavelength range from infrared (IR) to VUV. These new capabilities will eventually be made available to the $\gamma$-ray operation, which will greatly enhance the $\gamma$-ray user research program, creating new opportunities for certain types of nuclear physics research.
With the wide wavelength tuning range, the FEL is an intrinsically well-suited device to produce lasing with multiple colors. Taking advantage of the availability of an undulator system with multiple undulators, we have demonstrated the first two-color lasing of a storage ring FEL. Using either a three- or four-undulator configuration with a pair of dual-band high reflectivity mirrors, we have achieved simultaneous lasing in the IR and UV spectral regions. With the low-gain feature of the storage ring FEL, the power generated at the two wavelengths can be equally built up and precisely balanced to reach FEL saturation. A systematic experimental program to characterize this two-color FEL has been carried out, including precise power control, a study of the power stability of two-color lasing, wavelength tuning, and the impact of the FEL mirror degradation. Using this two-color laser, we have started to develop a new two-color $\gamma$-ray beam for scientific research at the HIGS.
Using the undulator switchyard, four helical undulators installed in the beamline can be configured to not only enhance the FEL gain in the VUV regime, but also allow for the full polarization control of the FEL beams. For the accelerator operation, the use of helical undulators is essential to extend the FEL mirror lifetime by reducing radiation damage from harmonic undulator radiation. Using a pair of helical undulators with opposite helicities, we have realized (1) fast helicity switching between left- and right-circular polarizations, and (2) the generation of fully controllable linear polarization. In order to extend these new capabilities of polarization control to the $\gamma$-ray operation in a wide energy range at the HIGS, a set of FEL polarization diagnostic systems need to be developed to cover the entire FEL wavelength range. The preliminary development of the polarization diagnostics for the wavelength range from IR to UV has been carried out.
Resumo:
Abstract Short intense pulses of fast neutrons were produced in a two stage laser-driven experiment. Protons were accelerated by means of the Target Normal Sheath Acceleration (TNSA) method using the TITAN facility at the Lawrence Livermore National Laboratory. Neutrons were obtained following interactions of the protons with a secondary lithium fluoride (LiF) target. The properties of the neutron flux were studied using BC-400 plastic scintillation detectors and the neutron time of flight (nTOF) technique. The detector setup and the experimental conditions were simulated with the Geant4 toolkit. The effects of different components of the experimental setup on the nTOF were studied. Preliminary results from a comparison between experimental and simulated nTOF distributions are presented.
Resumo:
A target irradiated with a high power laser pulse, blows off a large amount of charge and as a consequence the target itself becomes a generator of electromagnetic pulses (EMP) owing to high return current flowing to the ground through the target holder. The first measurement of the magnetic field induced by the neutralizing current reaching a value of a few kA was performed with the use of an inductive target probe at the PALS Laser Facility (Cikhardt et al. Rev. Sci. Instrum. 85 (2014) 103507). A full description of EMP generation should contain information on the spatial distribution and temporal variation of the electromagnetic field inside and outside of the interaction chamber. For this reason, we consider the interaction chamber as a resonant cavity in which different modes of EMP oscillate for hundreds of nanoseconds, until the EMP is transmitted outside through the glass windows and EM waves are attenuated. Since the experimental determination of the electromagnetic field distribution is limited by the number of employed antennas, a mapping of the electromagnetic field has to be integrated with numerical simulations. Thus, this work reports on a detailed numerical mapping of the electromagnetic field inside the interaction chamber at the PALS Laser Facility (covering a frequency spectrum from 100 MHz to 3 GHz) using the commercial code COMSOL Multiphysics 5.2. Moreover we carried out a comparison of the EMP generated in the parallelepiped-like interaction chamber used in the Vulcan Petawatt Laser Facility at the Rutherford Appleton Laboratory, against that produced in the spherical interaction chamber of PALS.
Resumo:
After sudden ionization of a large molecule, the positive charge can migrate throughout the system on a sub-femtosecond time scale, purely guided by electronic coherences. The possibility to actively explore the role of the electron dynamics in the photo-chemistry of bio-relevant molecules is of fundamental interest for understanding, and perhaps ultimately controlling, the processes leading to damage, mutation and, more generally, to the alteration of the biological functions of the macromolecule. Attosecond laser sources can provide the extreme time resolution required to follow this ultrafast charge flow. In this review we will present recent advances in attosecond molecular science: after a brief description of the results obtained for small molecules, recent experimental and theoretical findings on charge migration in bio-relevant molecules will be discussed.
Resumo:
The aim of this work was to perform a detailed investigation of the use of Selective Laser Melting (SLM) technology to process eutectic silver-copper alloy Ag 28 wt. % Cu (also called AgCu28). The processing occurred with a Realizer SLM 50 desktop machine. The powder analysis (SEM-topography, EDX, particle distribution) was reported as well as the absorption rates for the near-infrared (NIR) spectrum. Microscope imaging showed the surface topography of the manufactured parts. Furthermore, microsections were conducted for the analysis of porosity. The Design of Experiments approach used the response surface method in order to model the statistical relationship between laser power, spot distance and pulse time.
Resumo:
Nonlinear optics is a broad field of research and technology that encompasses subject matter in the field of Physics, Chemistry, and Engineering. It is the branch of Optics that describes the behavior of light in nonlinear media, that is, media in which the dielectric polarization P responds nonlinearly to the electric field E of the light. This nonlinearity is typically only observed at very high light intensities. This area has applications in all optical and electro optical devices used for communication, optical storage and optical computing. Many nonlinear optical effects have proved to be versatile probes for understanding basic and applied problems. Nonlinear optical devices use nonlinear dependence of refractive index or absorption coefficient on the applied field. These nonlinear optical devices are passive devices and are referred to as intelligent or smart materials owing to the fact that the sensing, processing and activating functions required for optical processes are inherent to them which are otherwise separate in dynamic devices.The large interest in nonlinear optical crystalline materials has been motivated by their potential use in the fabrication of all-optical photonic devices. Transparent crystalline materials can exhibit different kinds of optical nonlinearities which are associated with a nonlinear polarization. The choice of the most suitable crystal material for a given application is often far from trivial; it should involve the consideration of many aspects. A high nonlinearity for frequency conversion of ultra-short pulses does not help if the interaction length is strongly limited by a large group velocity mismatch and the low damage threshold limits the applicable optical intensities. Also, it can be highly desirable to use a crystal material which can be critically phasematched at room temperature. Among the different types of nonlinear crystals, metal halides and tartrates have attracted due to their importance in photonics. Metal halides like lead halides have drawn attention because they exhibit interesting features from the stand point of the electron-lattice interaction .These materials are important for their luminescent properties. Tartrate single crystals show many interesting physical properties such as ferroelectric, piezoelectric, dielectric and optical characteristics. They are used for nonlinear optical devices based on their optical transmission characteristics. Among the several tartrate compounds, Strontium tartrate, Calcium tartrate and Cadmium tartrate have received greater attention on account of their ferroelectric, nonlinear optical and spectral characteristics. The present thesis reports the linear and nonlinear aspects of these crystals and their potential applications in the field of photonics.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-08