951 resultados para Imaging, Three-Dimensional
Resumo:
ANPO (A Non-predefined Outcome) is an an art-making methodology that employs structuralist theory of language (Saussure, Lacan, Foucault) combined with Hegel’s dialectic and the theory of creation of space by Lefebvre to generate spaces of dialogue and conversation between community members and different stakeholders. These theories of language are used to find artistic ways of representing a topic that community members have previously chosen. The topic is approached in a way that allows a visual, aural, performative and gustative form. To achieve this, the methodology is split in four main steps: step 1 ‘This is not a chair’, Step 2 ‘The topic’, Step 3 ‘ Vis-á-vis-á-vis’ and step 4. ‘Dialectical representation’ where the defined topic is used to generate artistic representations.The step 1 is a warm up exercise informed by the Rene Magritte painting ‘This is not a Pipe’. This exercise aims to help the participants to see an object as something else than an object but as a consequence of social implications. Step 2, participants choose a random topic and vote for it. The artist/facilitator does not predetermine the topic, participants are the one who propose it and choose it. Step 3, will be analysed in this publication and finally step 4, the broken down topic is taken to be represented and analysed in different ways.
Resumo:
This paper investigates the problem of seepage under the floor of hydraulic structures considering the compartment of flow that seeps through the surrounding banks of the canal. A computer program, utilizing a finite-element method and capable of handling three-dimensional (3D) saturated–unsaturated flow problems, was used. Different ratios of canal width/differential head applied on the structure were studied. The results produced from the two-dimensional (2D) analysis were observed to deviate largely from that obtained from 3D analysis of the same problem, despite the fact that the porous medium was isotropic and homogeneous. For example, the exit gradient obtained from 3D analysis was as high as 2.5 times its value obtained from 2D analysis. Uplift force acting upwards on the structure has also increased by about 46% compared with its value obtained from the 2D solution. When the canal width/ differential head ratio was 10 or higher, the 3D results were comparable to the 2D results. It is recommended to construct a core of low permeability soil in the banks of canal to reduce the seepage losses, uplift force, and exit gradient.
Resumo:
Simultaneous optical absorption and laser-induced fluorescence measurements have been used to map the three-dimensional number densities of ground-state ions and neutrals within a low-temperature KrF laser-produced magnesium plasma expanding into vacuum. Data is reported for the symmetry plane of the plasma, which includes the laser interaction point at a delay of 1 μs after the ∼30 ns KrF laser ablation pulse and for a laser fluence of 2 J cm−2 on target. The number density distributions of ion and neutral species within this plane indicate that two distinct regions exist within the plume; one is a fast component containing ions and neutrals at maximum densities of ∼3×1013 cm−3 and ∼4×1012 cm−3, respectively and the second is a high-density region containing slow neutral species, at densities up to ∼1×1015 cm−3.
Resumo:
The three-dimensional (3D) weaving process offers the ability to tailor the mechanical properties via design of the weave architecture. One repeat of the 3D woven fabric is represented by the unit cell. The model accepts basic weaver and material manufacturer data as inputs in order to calculate the geometric characteristics of the 3D woven unit cell. The specific weave architecture manufactured and subsequently modelled had an angle interlock type binding configuration. The modelled result was shown to have a close approximation compared to the experimentally measured values and highlighted the importance of the representation of the binder tow path.
Resumo:
Patterns forming spontaneously in extended, three-dimensional, dissipative systems are likely to excite several homogeneous soft modes (approximate to hydrodynamic modes) of the underlying physical system, much more than quasi-one- (1D) and two-dimensional (2D) patterns are. The reason is the lack of damping boundaries. This paper compares two analytic techniques to derive the pattern dynamics from hydrodynamics, which are usually equivalent but lead to different results when applied to multiple homogeneous soft modes. Dielectric electroconvection in nematic liquid crystals is introduced as a model for 3D pattern formation. The 3D pattern dynamics including soft modes are derived. For slabs of large but finite thickness the description is reduced further to a 2D one. It is argued that the range of validity of 2D descriptions is limited to a very small region above threshold. The transition from 2D to 3D pattern dynamics is discussed. Experimentally testable predictions for the stable range of ideal patterns and the electric Nusselt numbers are made. For most results analytic approximations in terms of material parameters are given. [S1063-651X(00)09512-X].
Resumo:
A mechanism or the localization of spatially periodic,self-oganized patterns in anisotropic media which requires systems extended in all three spatial dimensions is presented: When the anisotropy axis is twisted, the pattern becomes localized in planes parallel to the anisotropy axis. An analytical description of the effect is developed, and used to interpret recent experiments in the high-frequency regime of electroconvection by Bohatsch and Stannarius [Phys. Rev. E 60, 5591 (1999)]. The localization width is found to be of the order of magnitude of the geometrical average of the pattern wavelength and the inverse twist.
Resumo:
Near-infrared diffuse tomography was used in order to observe dynamic behaviour of flowing gases by measuring the 3D distributions of composition and temperature in a weakly scattering packed bed reactor, subject to wall effects and non-isothermal conditions. The technique was applied to the vapour phase hydrogen isotopic exchange reaction in a hydrophobic packing of low aspect ratio made of platinum on styrene divinyl benzene sulphonate copolymer resin. The results of tomography revealed uneven temperature and composition maps of water and deuterated water vapours in the core-packed bed and in the vicinity of the wall owing to flow maldistribution. The dynamic lag between the near-wall water vapour and deuterated water vapour compositions were observed suggesting that the convective transfer which was significant near the wall at the start, owing to high porosity, was also effective at large conversions.