852 resultados para HumanComputer-Interaction Wearable Hands-free HealthCare Augmented-Reality Moverio Thalmic-Myo
Resumo:
On the basis of a corpus of e-chat IRC exchanges (approximately 10,000 words in total) between Greek- and English-speaking speakers, the paper establishes a typical generic structure for two-party IRC exchanges, by focusing on how participants are oriented towards an ideal schema of phases and acts, as well as on how their interpersonal concerns contribute to the shaping of this schema. It is found that IRC interlocutors are primarily concerned with establishing contact with each other, while the (ideational) development of topic seems to be a less pressing need. The signaling of interpersonal relations is pervasive throughout e-chat discourse, as seen both in the range of devices developed and the two free elements of the generic schema, that is conversation play and channel check. It is also found that the accomplishment of the generic schema in each IRC exchange crucially depends on the acts of negotiation performed by the initiator and the responder.
Resumo:
The grasping of virtual objects has been an active research field for several years. Solutions providing realistic grasping rely on special hardware or require time-consuming parameterizations. Therefore, we introduce a flexible grasping algorithm enabling grasping without computational complex physics. Objects can be grasped and manipulated with multiple fingers. In addition, multiple objects can be manipulated simultaneously with our approach. Through the usage of contact sensors the technique is easily configurable and versatile enough to be used in different scenarios.
Resumo:
The integration of the auditory modality in virtual reality environments is known to promote the sensations of immersion and presence. However it is also known from psychophysics studies that auditory-visual interaction obey to complex rules and that multisensory conflicts may disrupt the adhesion of the participant to the presented virtual scene. It is thus important to measure the accuracy of the auditory spatial cues reproduced by the auditory display and their consistency with the spatial visual cues. This study evaluates auditory localization performances under various unimodal and auditory-visual bimodal conditions in a virtual reality (VR) setup using a stereoscopic display and binaural reproduction over headphones in static conditions. The auditory localization performances observed in the present study are in line with those reported in real conditions, suggesting that VR gives rise to consistent auditory and visual spatial cues. These results validate the use of VR for future psychophysics experiments with auditory and visual stimuli. They also emphasize the importance of a spatially accurate auditory and visual rendering for VR setups.
Resumo:
Mixed Reality (MR) aims to link virtual entities with the real world and has many applications such as military and medical domains [JBL+00, NFB07]. In many MR systems and more precisely in augmented scenes, one needs the application to render the virtual part accurately at the right time. To achieve this, such systems acquire data related to the real world from a set of sensors before rendering virtual entities. A suitable system architecture should minimize the delays to keep the overall system delay (also called end-to-end latency) within the requirements for real-time performance. In this context, we propose a compositional modeling framework for MR software architectures in order to specify, simulate and validate formally the time constraints of such systems. Our approach is first based on a functional decomposition of such systems into generic components. The obtained elements as well as their typical interactions give rise to generic representations in terms of timed automata. A whole system is then obtained as a composition of such defined components. To write specifications, a textual language named MIRELA (MIxed REality LAnguage) is proposed along with the corresponding compilation tools. The generated output contains timed automata in UPPAAL format for simulation and verification of time constraints. These automata may also be used to generate source code skeletons for an implementation on a MR platform. The approach is illustrated first on a small example. A realistic case study is also developed. It is modeled by several timed automata synchronizing through channels and including a large number of time constraints. Both systems have been simulated in UPPAAL and checked against the required behavioral properties.
Resumo:
Imitation learning is a promising approach for generating life-like behaviors of virtual humans and humanoid robots. So far, however, imitation learning has been mostly restricted to single agent settings where observed motions are adapted to new environment conditions but not to the dynamic behavior of interaction partners. In this paper, we introduce a new imitation learning approach that is based on the simultaneous motion capture of two human interaction partners. From the observed interactions, low-dimensional motion models are extracted and a mapping between these motion models is learned. This interaction model allows the real-time generation of agent behaviors that are responsive to the body movements of an interaction partner. The interaction model can be applied both to the animation of virtual characters as well as to the behavior generation for humanoid robots.
Resumo:
Immersive virtual environments (IVEs) have the potential to afford natural interaction in the three-dimensional (3D) space around a user. However, interaction performance in 3D mid-air is often reduced and depends on a variety of ergonomics factors, the user's endurance, muscular strength, as well as fitness. In particular, in contrast to traditional desktop-based setups, users often cannot rest their arms in a comfortable pose during the interaction. In this article we analyze the impact of comfort on 3D selection tasks in an immersive desktop setup. First, in a pre-study we identified how comfortable or uncomfortable specific interaction positions and poses are for users who are standing upright. Then, we investigated differences in 3D selection task performance when users interact with their hands in a comfortable or uncomfortable body pose, while sitting on a chair in front of a table while the VE was displayed on a headmounted display (HMD). We conducted a Fitts' Law experiment to evaluate selection performance in different poses. The results suggest that users achieve a significantly higher performance in a comfortable pose when they rest their elbow on the table.
Resumo:
Three-dimensional (3D) immersive virtual worlds have been touted as being capable of facilitating highly interactive, engaging, multimodal learning experiences. Much of the evidence gathered to support these claims has been anecdotal but the potential that these environments hold to solve traditional problems in online and technology-mediated education—primarily learner isolation and student disengagement—has resulted in considerable investments in virtual world platforms like Second Life, OpenSimulator, and Open Wonderland by both professors and institutions. To justify this ongoing and sustained investment, institutions and proponents of simulated learning environments must assemble a robust body of evidence that illustrates the most effective use of this powerful learning tool. In this authoritative collection, a team of international experts outline the emerging trends and developments in the use of 3D virtual worlds for teaching and learning. They explore aspects of learner interaction with virtual worlds, such as user wayfinding in Second Life, communication modes and perceived presence, and accessibility issues for elderly or disabled learners. They also examine advanced technologies that hold potential for the enhancement of learner immersion and discuss best practices in the design and implementation of virtual world-based learning interventions and tasks. By evaluating and documenting different methods, approaches, and strategies, the contributors to Learning in Virtual Worlds offer important information and insight to both scholars and practitioners in the field. AU Press is an open access publisher and the book is available for free in PDF format as well as for purchase on our website: http://bit.ly/1W4yTRA
Resumo:
Abstract Inhalation of ambient air particles or engineered nanoparticles (NP) handled as powders, dispersions or sprays in industrial processes and contained in consumer products pose a potential and largely unknown risk for incidental exposure. For efficient, economical and ethically sound evaluation of health hazards by inhaled nanomaterials, animal-free and realistic in vitro test systems are desirable. The new Nano Aerosol Chamber for in-vitro Toxicity studies (NACIVT) has been developed and fully characterized regarding its performance. NACIVT features a computer-controlled temperature and humidity conditioning, preventing cellular stress during exposure and allowing long-term exposures. Airborne NP are deposited out of a continuous air stream simultaneously on up to 24 cell cultures on Transwell® inserts, allowing high-throughput screening. In NACIVT, polystyrene as well as silver particles were deposited uniformly and efficiently on all 24 Transwell® inserts. Particle-cell interaction studies confirmed that deposited particles reach the cell surface and can be taken up by cells. As demonstrated in control experiments, there was no evidence for any adverse effects on human bronchial epithelial cells (BEAS-2B) due to the exposure treatment in NACIVT. The new, fully integrated and transportable deposition chamber NACIVT provides a promising tool for reliable, acute and sub-acute dose-response studies of (nano)particles in air-exposed tissues cultured at the air-liquid interface.
Resumo:
People often use tools to search for information. In order to improve the quality of an information search, it is important to understand how internal information, which is stored in user’s mind, and external information, represented by the interface of tools interact with each other. How information is distributed between internal and external representations significantly affects information search performance. However, few studies have examined the relationship between types of interface and types of search task in the context of information search. For a distributed information search task, how data are distributed, represented, and formatted significantly affects the user search performance in terms of response time and accuracy. Guided by UFuRT (User, Function, Representation, Task), a human-centered process, I propose a search model, task taxonomy. The model defines its relationship with other existing information models. The taxonomy clarifies the legitimate operations for each type of search task of relation data. Based on the model and taxonomy, I have also developed prototypes of interface for the search tasks of relational data. These prototypes were used for experiments. The experiments described in this study are of a within-subject design with a sample of 24 participants recruited from the graduate schools located in the Texas Medical Center. Participants performed one-dimensional nominal search tasks over nominal, ordinal, and ratio displays, and searched one-dimensional nominal, ordinal, interval, and ratio tasks over table and graph displays. Participants also performed the same task and display combination for twodimensional searches. Distributed cognition theory has been adopted as a theoretical framework for analyzing and predicting the search performance of relational data. It has been shown that the representation dimensions and data scales, as well as the search task types, are main factors in determining search efficiency and effectiveness. In particular, the more external representations used, the better search task performance, and the results suggest the ideal search performance occurs when the question type and corresponding data scale representation match. The implications of the study lie in contributing to the effective design of search interface for relational data, especially laboratory results, which are often used in healthcare activities.
Resumo:
The interaction between sensory rhodopsin II (SRII) and its transducer HtrII was studied by the time-resolved laser-induced transient grating method using the D75N mutant of SRII, which exhibits minimal visible light absorption changes during its photocycle, but mediates normal phototaxis responses. Flash-induced transient absorption spectra of transducer-free D75N and D75N joined to 120 amino-acid residues of the N-terminal part of the SRII transducer protein HtrII (DeltaHtrII) showed only one spectrally distinct K-like intermediate in their photocycles, but the transient grating method resolved four intermediates (K(1)-K(4)) distinct in their volumes. D75N bound to HtrII exhibited one additional slower kinetic species, which persists after complete recovery of the initial state as assessed by absorption changes in the UV-visible region. The kinetics indicate a conformationally changed form of the transducer portion (designated Tr*), which persists after the photoreceptor returns to the unphotolyzed state. The largest conformational change in the DeltaHtrII portion was found to cause a DeltaHtrII-dependent increase in volume rising in 8 micros in the K(4) state and a drastic decrease in the diffusion coefficient (D) of K(4) relatively to those of the unphotolyzed state and Tr*. The magnitude of the decrease in D indicates a large structural change, presumably in the solvent-exposed HAMP domain of DeltaHtrII, where rearrangement of interacting molecules in the solvent would substantially change friction between the protein and the solvent.
Resumo:
RATIONALE: Thyroid hormones and their interactions with catecholamines play a potentially important role in alterations of mood and cognition. OBJECTIVES: This study aimed to examine the neurobiological effects of catecholamine depletion on thyroid hormones by measuring endocrine and cerebral metabolic function in unmedicated subjects with remitted major depressive disorder (RMDD) and in healthy controls. METHODS: This was a randomized, placebo-controlled, and double-blind crossover trial that included 15 unmedicated RMDD subjects and 13 healthy control subjects. The participants underwent two 3-day-long sessions at 1-week intervals; each participant was randomly administered oral α-methyl-para-tyrosine in one session (catecholamine depletion) and an identical capsule containing hydrous lactose (sham depletion) in the other session prior to a [(18)F]-fluorodeoxyglucose positron emission tomography scan. RESULTS: Serum concentrations of free T3 (FT3), free T4 (FT4), and TSH were obtained and assessed with respect to their relationship to regional cerebral glucose metabolism. Both serum FT3 (P = 0.002) and FT4 (P = 0.0009) levels were less suppressed after catecholamine depletion compared with placebo treatment in the entire study sample. There was a positive association between both FT3 (P = 0.0005) and FT4 (P = 0.002) and depressive symptoms measured using the Montgomery-Åsberg Depression Rating Scale. The relative elevation in FT3 level was correlated with a decrease in regional glucose metabolism in the right dorsolateral prefrontal cortex (rDLPFC; P < 0.05, corrected). CONCLUSIONS: This study provided evidence of an association between a thyroid-catecholamine interaction and mood regulation in the rDLPFC.
Resumo:
Species in the genus Naegleria are free-living amoebae of the soil and warm fresh water. Although around 30 species have been recognized, Naegleria fowleri is the only one that causes primary amoebic meningoencephalitis (PAM) in humans. PAM is an acute and fast progressing disease affecting the central nervous system. Most of the patients die within 1-2 weeks of exposure to the infectious water source. The fact that N. fowleri causes such fast progressing and highly lethal infections has opened many questions regarding the relevant pathogenicity factors of the amoeba. In order to investigate the pathogenesis of N. fowleri under defined experimental conditions, we developed a novel high- versus low-pathogenicity model for this pathogen. We showed that the composition of the axenic growth media influenced growth behaviour and morphology, as well as in vitro cytotoxicity and in vivo pathogenicity of N. fowleri. Trophozoites maintained in Nelson's medium were highly pathogenic for mice, demonstrated rapid in vitro proliferation, characteristic expression of surface membrane vesicles and a small cell diameter, and killed target mouse fibroblasts by both contact-dependent and -independent destruction. In contrast, N. fowleri cultured in PYNFH medium exhibited a low pathogenicity, slower growth, increased cell size and contact-dependent target cell destruction. However, cultivation of the amoeba in PYNFH medium supplemented with liver hydrolysate (LH) resulted in trophozoites that were highly pathogenic in mice, and demonstrated an intermediate proliferation rate in vitro, diminished cell diameter and contact-dependent target cell destruction. Thus, in this model, the presence of LH resulted in increased proliferation of trophozoites in vitro and enhanced pathogenicity of N. fowleri in mice. However, neither in vitro cytotoxicity mechanisms nor the presence of membrane vesicles on the surface correlated with the pathologic potential of the amoeba. This indicated that the pathogenicity of N. fowleri remains a complex interaction between as-yet-unidentified cellular mechanisms.
In the aftermath of medical error : Caring for patients, family, and the healthcare workers involved
Resumo:
Medical errors, in particular those resulting in harm, pose a serious situation for patients ("first victims") and the healthcare workers involved ("second victims") and can have long-lasting and distressing consequences. To prevent a second traumatization, appropriate and empathic interaction with all persons involved is essential besides error analysis. Patients share a nearly universal, broad preference for a complete disclosure of incidents, regardless of age, gender, or education. This includes the personal, timely and unambiguous disclosure of the adverse event, information relating to the event, its causes and consequences, and an apology and sincere expression of regret. While the majority of healthcare professionals generally support and honest and open disclosure of adverse events, they also face various barriers which impede the disclosure (e.g., fear of legal consequences). Despite its essential importance, disclosure of adverse events in practice occurs in ways that are rarely acceptable to patients and their families. The staff involved often experiences acute distress and an intense emotional response to the event, which may become chronic and increase the risk of depression, burnout and post-traumatic stress disorders. Communication with peers is vital for people to be able to cope constructively and protectively with harmful errors. Survey studies among healthcare workers show, however, that they often do not receive sufficient individual and institutional support. Healthcare organizations should prepare for medical errors and harmful events and implement a communication plan and a support system that covers the requirements and different needs of patients and the staff involved.
Resumo:
BACKGROUND Co-speech gestures are part of nonverbal communication during conversations. They either support the verbal message or provide the interlocutor with additional information. Furthermore, they prompt as nonverbal cues the cooperative process of turn taking. In the present study, we investigated the influence of co-speech gestures on the perception of dyadic dialogue in aphasic patients. In particular, we analysed the impact of co-speech gestures on gaze direction (towards speaker or listener) and fixation of body parts. We hypothesized that aphasic patients, who are restricted in verbal comprehension, adapt their visual exploration strategies. METHODS Sixteen aphasic patients and 23 healthy control subjects participated in the study. Visual exploration behaviour was measured by means of a contact-free infrared eye-tracker while subjects were watching videos depicting spontaneous dialogues between two individuals. Cumulative fixation duration and mean fixation duration were calculated for the factors co-speech gesture (present and absent), gaze direction (to the speaker or to the listener), and region of interest (ROI), including hands, face, and body. RESULTS Both aphasic patients and healthy controls mainly fixated the speaker's face. We found a significant co-speech gesture × ROI interaction, indicating that the presence of a co-speech gesture encouraged subjects to look at the speaker. Further, there was a significant gaze direction × ROI × group interaction revealing that aphasic patients showed reduced cumulative fixation duration on the speaker's face compared to healthy controls. CONCLUSION Co-speech gestures guide the observer's attention towards the speaker, the source of semantic input. It is discussed whether an underlying semantic processing deficit or a deficit to integrate audio-visual information may cause aphasic patients to explore less the speaker's face.