917 resultados para Higher order terms


Relevância:

80.00% 80.00%

Publicador:

Resumo:

研讨有限体积(FV)方法重构近似高精度的作用问题.FV方法中积分近似采用中点规则为二阶精度时,重构近似高精度(精度高于二阶)的意义和作用是一个有争议的问题.利用数值摄动技术"。0构造了标量输运方程的积分近似为二阶精度、重构近似为任意阶精度的迎风型和中心型摄动有限体积(PFV)格式.迎风 PFV格式无条件满足对流有界准则(CBC),中心型PFV格式为正型格式,两者均不会产生数值振荡解.利用 PFV格式求解模型方程的数值结果表明:与一阶迎风和二阶中心格式相比,PFV格式精度高、对解的问断分辨率高、稳定性好、雷诺数的适用范围大,数值地"证实"重构近似高精度和PFV格式的实际意义和好处.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The convective--diffusion equation is of primary importance in such fields as fluid dynamics and heat transfer hi the numerical methods solving the convective-diffusion equation, the finite volume method can use conveniently diversified grids (structured and unstructured grids) and is suitable for very complex geometry The disadvantage of FV methods compared to the finite difference method is that FV-methods of order higher than second are more difficult to develop in three-dimensional cases. The second-order central scheme (2cs) offers a good compromise among accuracy, simplicity and efficiency, however, it will produce oscillatory solutions when the grid Reynolds numbers are large and then very fine grids are required to obtain accurate solution. The simplest first-order upwind (IUW) scheme satisfies the convective boundedness criteria, however. Its numerical diffusion is large. The power-law scheme, QMCK and second-order upwind (2UW) schemes are also often used in some commercial codes. Their numerical accurate are roughly consistent with that of ZCS. Therefore, it is meaningful to offer higher-accurate three point FV scheme. In this paper, the numerical-value perturbational method suggested by Zhi Gao is used to develop an upwind and mixed FV scheme using any higher-order interpolation and second-order integration approximations, which is called perturbational finite volume (PFV) scheme. The PFV scheme uses the least nodes similar to the standard three-point schemes, namely, the number of the nodes needed equals to unity plus the face-number of the control volume. For instanc6, in the two-dimensional (2-D) case, only four nodes for the triangle grids and five nodes for the Cartesian grids are utilized, respectively. The PFV scheme is applied on a number of 1-D problems, 2~Dand 3-D flow model equations. Comparing with other standard three-point schemes, The PFV scheme has much smaller numerical diffusion than the first-order upwind (IUW) scheme, its numerical accuracy are also higher than the second-order central scheme (2CS), the power-law scheme (PLS), the QUICK scheme and the second-order upwind(ZUW) scheme.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

本书收录关于力学领域的论文301篇。内容包括:回顾20世纪力学在中国的发展,描绘了2000年中国和世界在力学各主要领域的发展现状;展望力学在21世纪的发展方向,探论新世纪中可能面临的新的重大力学等问题。

order="0" cellspacing="0" cellpadding="0" width="660">
前言 白以龙;杨卫;  
力学学科《学科发展与优先领域战略研究报告》   
世纪之交对力学的回顾、展望和想象 白以龙;  
计算流体力学中发展物理分析的几个问题 张涵信;李沁;宗文刚;张来平;  
非对称Riccati方程基于本征解的分析解 钟万勰;  
实验固体力学近几年的概况 伍小平;  
HIGHER-ORDER COHESIVE ELASTICITY THEORIES OF FRACTURE Anna Vainchtein;  
疲劳短裂纹群体损伤随机特征研究 洪友士;郑亮;乔宇;  
半浮区热毛细对流及其不稳定性机理 胡文瑞;唐泽眉;  
ZONAL AND CORRELATION ANALYSIS IN SWEPT SHOCK/BOUNDARY LAYER INTERACTIONS 邓学蓥;  
经典约束系统动力学的研究进展 梅凤翔;  
复杂系统的非线性动力学问题 陆启韶;  
时滞受控系统动力学研究进展 胡海岩;王在华;  
力学与航天器工程 马兴瑞;苟兴宇;周志成;  
采矿工程中的力学问题与分析 谢和平;  
CHALLENGING PROBLEMS IN FAILURE ANALYSIS OF DUAL-PHASE MATERIALS: CYCLIC MICRO-PLASTICITY AND SMALL FATIGUE CRACK TIP BEHAVIOR   
力学与国防科技 周丰峻;  
流体力学和气动热弹性力学新一代反命题的研究 刘高联;  
含灰气体近壁区流动及传热增强机制分析 王柏懿;戚隆溪;王超;江先金;  
三维定常、二维非定常分离模式及准则研究 吕志咏;

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The question of finding variational principles for coupled systems of first order partial differential equations is considered. Using a potential representation for solutions of the first order system a higher order system is obtained. Existence of a variational principle follows if the original system can be transformed to a self-adjoint higher order system. Existence of variational principles for all linear wave equations with constant coefficients having real dispersion relations is established. The method of adjoining some of the equations of the original system to a suitable Lagrangian function by the method of Lagrange multipliers is used to construct new variational principles for a class of linear systems. The equations used as side conditions must satisfy highly-restrictive integrability conditions. In the more difficult nonlinear case the system of two equations in two independent variables can be analyzed completely. For systems determined by two conservation laws the side condition must be a conservation law in addition to satisfying the integrability conditions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In an optical parametric chirped pulse amplification (OPCPA) laser system, residual phase dispersion should be compensated as much as possible to shorten the amplified pulses and improve the pulse contrast ratio. Expressions of orders of the induced phases in collinear optical parametric amplification (OPA) processes are presented at the central signal wavelength to depict a clear physics picture and to simplify the design of phase compensation. As examples, we simulate two OPCPA systems to compensate for the phases up to the partial fourth-order terms, and obtain flat phase spectra of 200-nm bandwidth at 1064 nm and 90-nm at 800 nm.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The dynamics and harmonics emission spectra due to electron oscillation driven by intense laser pulses have been investigated considering a single electron model. The spectral and angular distributions of the harmonics radiation are numerically analyzed and demonstrate significantly different characteristics from those of the low-intensity field case. Higher-order harmonic radiation is possible for a sufficiently intense driving laser pulse. A complex shifting and broadening structure of the spectrum is observed and analyzed for different polarization. For a realistic pulsed photon beam, the spectrum of the radiation is redshifted for backward radiation and blueshifted for forward radiation, and spectral broadening is noticed. This is due to the changes in the longitudinal velocity of the electron during the laser pulse. These effects are much more pronounced at higher laser intensities giving rise to even higher-order harmonics that eventually leads to a continuous spectrum. Numerical simulations have further shown that broadening of the high harmonic radiation can be limited by increasing the laser pulse width. The complex shifting and broadening of the spectra can be employed to characterize the ultrashort and ultraintense laser pulses and to study the ultrafast dynamics of the electrons. (c) 2006 American Institute of Physics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A theoretical investigation on the nonlinear pulse propagation and dispersive wave generation in the anomalous dispersion region of a microstructured fiber is presented. By simulating the dispersive wave generation under different conditions. it is found that the generation mechanism of the dispersive wave is mainly due to the pulse trapping across the zero-dispersion wavelength. By varying the initial pulse chirp, the output spectrum can be broadened and the intensity of the dispersive wave can be obviously enhanced. In particular, there exists an optimal positive chirp which maximizes the intensity of the dispersive wave. This effect can be explained by the energy transfer from the Raman soliton to the dispersive wave due to the effect of the pulse trapping and the effect of the higher-order dispersion. From the phase aspect, the explanation of this effect is also included. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A novel phase-type quantum-dot-array diffraction grating (QDADG) is reported. In contrast to an earlier amplitude-type QDADG [C. Wang , Rev. Sci. Instrum. 78, 053503 (2007)], the new phase-type QDADG would remove the zeroth order diffraction at some certain wavelength, as well as suppressing the higher-order diffractions. In this paper, the basic concept, the fabrication, the calibration techniques, and the calibration results are presented. Such a grating can be applied in the research fields of beam splitting, laser probe diagnostics, and so on.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A central objective in signal processing is to infer meaningful information from a set of measurements or data. While most signal models have an overdetermined structure (the number of unknowns less than the number of equations), traditionally very few statistical estimation problems have considered a data model which is underdetermined (number of unknowns more than the number of equations). However, in recent times, an explosion of theoretical and computational methods have been developed primarily to study underdetermined systems by imposing sparsity on the unknown variables. This is motivated by the observation that inspite of the huge volume of data that arises in sensor networks, genomics, imaging, particle physics, web search etc., their information content is often much smaller compared to the number of raw measurements. This has given rise to the possibility of reducing the number of measurements by down sampling the data, which automatically gives rise to underdetermined systems.

In this thesis, we provide new directions for estimation in an underdetermined system, both for a class of parameter estimation problems and also for the problem of sparse recovery in compressive sensing. There are two main contributions of the thesis: design of new sampling and statistical estimation algorithms for array processing, and development of improved guarantees for sparse reconstruction by introducing a statistical framework to the recovery problem.

We consider underdetermined observation models in array processing where the number of unknown sources simultaneously received by the array can be considerably larger than the number of physical sensors. We study new sparse spatial sampling schemes (array geometries) as well as propose new recovery algorithms that can exploit priors on the unknown signals and unambiguously identify all the sources. The proposed sampling structure is generic enough to be extended to multiple dimensions as well as to exploit different kinds of priors in the model such as correlation, higher order moments, etc.

Recognizing the role of correlation priors and suitable sampling schemes for underdetermined estimation in array processing, we introduce a correlation aware framework for recovering sparse support in compressive sensing. We show that it is possible to strictly increase the size of the recoverable sparse support using this framework provided the measurement matrix is suitably designed. The proposed nested and coprime arrays are shown to be appropriate candidates in this regard. We also provide new guarantees for convex and greedy formulations of the support recovery problem and demonstrate that it is possible to strictly improve upon existing guarantees.

This new paradigm of underdetermined estimation that explicitly establishes the fundamental interplay between sampling, statistical priors and the underlying sparsity, leads to exciting future research directions in a variety of application areas, and also gives rise to new questions that can lead to stand-alone theoretical results in their own right.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Moving mesh methods (also called r-adaptive methods) are space-adaptive strategies used for the numerical simulation of time-dependent partial differential equations. These methods keep the total number of mesh points fixed during the simulation, but redistribute them over time to follow the areas where a higher mesh point density is required. There are a very limited number of moving mesh methods designed for solving field-theoretic partial differential equations, and the numerical analysis of the resulting schemes is challenging. In this thesis we present two ways to construct r-adaptive variational and multisymplectic integrators for (1+1)-dimensional Lagrangian field theories. The first method uses a variational discretization of the physical equations and the mesh equations are then coupled in a way typical of the existing r-adaptive schemes. The second method treats the mesh points as pseudo-particles and incorporates their dynamics directly into the variational principle. A user-specified adaptation strategy is then enforced through Lagrange multipliers as a constraint on the dynamics of both the physical field and the mesh points. We discuss the advantages and limitations of our methods. The proposed methods are readily applicable to (weakly) non-degenerate field theories---numerical results for the Sine-Gordon equation are presented.

In an attempt to extend our approach to degenerate field theories, in the last part of this thesis we construct higher-order variational integrators for a class of degenerate systems described by Lagrangians that are linear in velocities. We analyze the geometry underlying such systems and develop the appropriate theory for variational integration. Our main observation is that the evolution takes place on the primary constraint and the 'Hamiltonian' equations of motion can be formulated as an index 1 differential-algebraic system. We then proceed to construct variational Runge-Kutta methods and analyze their properties. The general properties of Runge-Kutta methods depend on the 'velocity' part of the Lagrangian. If the 'velocity' part is also linear in the position coordinate, then we show that non-partitioned variational Runge-Kutta methods are equivalent to integration of the corresponding first-order Euler-Lagrange equations, which have the form of a Poisson system with a constant structure matrix, and the classical properties of the Runge-Kutta method are retained. If the 'velocity' part is nonlinear in the position coordinate, we observe a reduction of the order of convergence, which is typical of numerical integration of DAEs. We also apply our methods to several models and present the results of our numerical experiments.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In a recent experimental work on the excess photon detachment (EPD) of H- ions [Phys. Rev. Lett. 87 (2001) 243001] it has been found that the ponderomotive shift of each EPD peak increases with the order of the EPD channel. By using a nonperturbative quantum scattering theory, we obtain the kinetic energy spectra for the differential detachment rate along the laser polarization for several laser intensities. It is demonstrated that higher order EPD peaks are produced mainly at relatively higher laser intensities. By calculating the overall EPD spectra with varying laser intensities, it is found that the ponderomotive shift of each EPD peak increases with the order of the EPD channel. Our calculations are in good agreement with the experimental observation. It is found that different EPD channels occur mainly when the laser field reaches some values, thus the intensity distribution of the laser field is responsible for the varying ponderomotive shifts.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The characteristics of backward harmonic radiation due to electron oscillations driven by a linearly polarized fs laser pulse are analysed considering a single electron model. The spectral distributions of the electron's backward harmonic radiation are investigated in detail for different parameters of the driver laser pulse. Higher order harmonic radiations are possible for a sufficiently intense driving laser pulse. We have shown that for a realistic pulsed photon beam, the spectrum of the radiation is red shifted as well as broadened because of changes in the longitudinal velocity of the electrons during the laser pulse. These effects are more pronounced at higher laser intensities giving rise to higher order harmonics that eventually leads to a continuous spectrum. Numerical simulations have further shown that by increasing the laser pulse width the broadening of the high harmonic radiations can be controlled.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The characteristics of harmonic radiation due to electron oscillation driven by an intense femtosecond laser pulse are analyzed considering a single electron model. An interesting modulated structure of the spectrum is observed and analyzed for different polarization. Higher order harmonic radiations are possible for a sufficiently intense driving laser pulse. We have shown that for a realistic pulsed photon beam, the spectrum of the radiation is red shifted as well as broadened because of changes in the longitudinal velocity of the electrons during the laser pulse. These effects are more pronounced at higher laser intensities giving rise to higher order harmonics that eventually leads to a continuous spectrum. Numerical simulations have further shown that by increasing the laser pulse width broadening of the high harmonic radiations can be limited. (C) 2005 Elsevier B.V. All rights reserved.