953 resultados para Grassland Ecosystems
Resumo:
I utilized state the art remote sensing and GIS (Geographical Information System) techniques to study large scale biological, physical and ecological processes of coastal, nearshore, and offshore waters of Lake Michigan and Lake Superior. These processes ranged from chlorophyll a and primary production time series analysies in Lake Michigan to coastal stamp sand threats on Buffalo Reef in Lake Superior. I used SeaWiFS (Sea-viewing Wide Field-of-view Sensor) satellite imagery to trace various biological, chemical and optical water properties of Lake Michigan during the past decade and to investigate the collapse of early spring primary production. Using spatial analysis techniques, I was able to connect these changes to some important biological processes of the lake (quagga mussels filtration). In a separate study on Lake Superior, using LiDAR (Light Detection and Ranging) and aerial photos, we examined natural coastal erosion in Grand Traverse Bay, Michigan, and discussed a variety of geological features that influence general sediment accumulation patterns and interactions with migrating tailings from legacy mining. These sediments are moving southwesterly towards Buffalo Reef, creating a threat to the lake trout and lake whitefish breeding ground.
Resumo:
We analyzed six apiaries in several natural environments with a Mediterranean ecosystem in Madrid, central Spain, in order to understand how landscape and management characteristics may influence apiary health and bee production in the long term. We focused on five criteria (habitat quality, landscape heterogeneity, climate, management and health), as well as 30 subcriteria, and we used the analytic hierarchy process (AHP) to rank them according to relevance. Habitat quality proved to have the highest relevance, followed by beehive management. Within habitat quality, the following subcriteria proved to be most relevant: orographic diversity, elevation range and important plant species located 1.5 km from the apiary. The most important subcriteria under beehive management were honey production, movement of the apiary to a location with a higher altitude and wax renewal. Temperature was the most important subcriterion under climate, while pathogen and Varroa loads were the most significant under health. Two of the six apiaries showed the best values in the AHP analysis and showed annual honey production of 70 and 28 kg/colony. This high productivity was due primarily to high elevation range and high orographic diversity, which favored high habitat quality. In addition, one of these apiaries showed the best value for beehive management, while the other showed the best value for health, reflected in the low pathogen load and low average number of viruses. These results highlight the importance of environmental factors and good sanitary practices to maximize apiary health and honey productivity.
Resumo:
The molecular profiling system was developed using directed terminal-restriction fragment length polymorphism (dT-RFLP) to characterize soil nematode assemblages by relative abundance of feeding guilds and validation by comparison to traditional morphological method. The good performance of these molecular tools applied to soil nematodes assemblages create an opportunity to develop a novel approach for rapid assessment of the biodiversity changes of benthic nematodes assemblages of marine and estuarine sediments. The main aim of this research is to combine morphological and molecular analysis of estuarine nematodes assemblages, to establish a tool for fast assessment of the biodiversity changes within habitat recovery of Zostera noltii seagrass beds; and validate the dT-RFLP as a high-throughput tool to assess the system recovery. It was also proposed to develop a database of sequences related to individuals identified at species level to develop a new taxonomic reference system. A molecular phylogenetic analysis of the estuarine nematodes has being performed. After morphological identification, barcoding of 18S rDNA are being determined for each nematode species and the results have shown a good degree of concordance between traditional morphology-based identification and DNA sequences. The digest strategy developed for soil nematodes is not suitable for marine nematodes. Then five samples were cloned and sequenced and the sequence data was used to design a new dT-RFLP strategy to adapt this tool to marine assemblages. Several solutions were presented by DRAT and tested empirically to select the solution that cuts most efficiently, separating the different clusters. The results of quantitative PCR showed differences in nematode density between two sampling stations according the abundance of the nematode density obtained by the traditional methods. These results suggest that qPCR could be a robust tool for enumeration of nematode abundance, saving time.
Resumo:
Silvo-pastoral are mixed systems of trees and grass, which have been proposed as a means to extend the benefits of forest to farmed land. Agro-forestry systems under semi-arid Mediterranean conditions, called montados in Portugal and dehesas in Spain, cover substantial areas in the world. These silvo-pastoral systems are the most extensive European agro-forestry system, as they cover 3.5–4.0 Mha in Spain and Portugal. Long-term studies are essential to assess the magnitude of the temporal nutrient flow dynamics in terrestrial ecosystems and to understand the response of these systems to fertilizer management. In order to implement the conservation task and recovery of resources through silvo-pastoral systems it is necessary to know and correct potential limiting factors, especially the soil factor, and this requires agronomic knowledge as well as the implmentation of the available new technologies. In this context, this task aims at a better understanding of the contribution of the two components of montado ecosystem (trees and herbaceous vegetation) on the soil nutrient and water dynamics, that allow for the interpretation of the variability of pasture dry matter yield and help the farmer in the management of tree density. Collaterally the task will evaluate and calibrate new technologies that simplify the monitoring of soil, grassland, trees and grazing animals.
Resumo:
In Europe, the concerns with the status of marine ecosystems have increased, and the Marine Directive has as main goal the achievement of Good Environmental Status (GES) of EU marine waters by 2020. Molecular tools are seen as promising and emerging approaches to improve ecosystem monitoring, and have led ecology into a new era, representing perhaps the most source of innovation in marine monitoring techniques. Benthic nematodes are considered ideal organisms to be used as biological indicator of natural and anthropogenic disturbances in aquatic ecosystems underpinning monitoring programmes on the ecological quality of marine ecosystems, very useful to assess the GES of the marine environment. dT-RFLP (directed Terminal-Restriction Fragment Length Polymorphism) allows to assess the diversity of nematode communities, but also allows studying the functioning of the ecosystem, and combined with relative real-time PCR (qPCR), provides a high-throughput semi-quantitative characterization of nematode communities. These characteristics make the two molecular tools good descriptors for the good environmental status assessment. The main aim of this study is to develop and optimize the dT-RFLP and qPCR in Mira estuary (SW coast, Portugal). A molecular phylogenetic analysis of marine and estuarine nematodes is being performed combining morphological and molecular analysis to evaluate the diversity of free-living marine nematodes in Mira estuary. After morphological identification, barcoding of 18S rDNA and COI genes are being determined for each nematode species morphologically identified. So far we generated 40 new sequences belonging to 32 different genus and 17 families, and the study has shown a good degree of concordance between traditional morphology-based identification and DNA sequences. These results will improve the assessment of marine nematode diversity and contribute to a more robust nematode taxonomy. The DNA sequences are being used to develop the dT-RFLP with the ability to easily process large sample numbers (hundreds and thousands), rather than typical of classical taxonomic or low throughput molecular analyses. A preliminary study showed that the digest enzymes used in dT-RFLP for terrestrial assemblages separated poorly the marine nematodes at taxonomic level for functional group analysis. A new digest combination was designed using the software tool DRAT (Directed Terminal Restriction Analysis Tool) to distinguished marine nematode taxa. Several solutions were provided by DRAT and tested empirically to select the solution that cuts most efficiently. A combination of three enzymes and a single digest showed to be the best solution to separate the different clusters. Parallel to this, another tool is being developed to estimate the population size (qPCR). An improvement in qPCR estimation of gene copy number using an artificial reference is being performed for marine nematodes communities to quantify the abundance. Once developed, it is proposed to validate both methodologies by determining the spatial and temporal variability of benthic nematodes assemblages across different environments. The application of these high-throughput molecular approaches for benthic nematodes will improve sample throughput and their implementation more efficient and faster as indicator of ecological status of marine ecosystems.
Resumo:
In recent years, haying has extended to Iberian Mediterranean dry grasslands potentially impacting on grassland bird ecology. We evaluated the impact of haying on a grassland bird community of South Portugal. Our main goals were: (1) to investigate the exposure of different species to haying, (2) to investigate potential removal of nests and dead birds from hayed fields by haying machinery using the ratio (REC) between the expected number of records and the number of records collected and (3) to link clutch destruction and bird mortality with haying management practices. Hayed fields were surveyed for signs of breeding and birds censused prior to mowing. Linear models were computed, linking the REC with haying machinery and sward properties. GLMs and model averaging were used to obtain models linking clutch destruction, bird mortality and haying management variables. Only 4 % of records evidenced successful nesting attempts (N = 177). REC evaluation suggested high nest or dead bird removal by the machinery, particularly in fields with lower vegetation biomass prior to cutting. Sickle bar mowers and one-rotor rotary rakes returned higher REC but lower probability of found nests removed from the original nesting sites comparatively to discs mowers and wheel rakes. Higher probabilities of mortality events were found in fields mown earlier (but not in all years). On the other hand, lower mortality was found in fields raked with two-rotor rotary rakes. Delayed haying, silage production in temporary crops and the use haying machinery enabling simultaneously mowing and gathering hay in lines are discussed as management alternatives.
Resumo:
Procambarus clarkii is currently recorded from 16 European territories. On top of being a vector of crayfish plague, which is responsible for large-scale disappearance of native crayfish species, it causes severe impacts on diverse aquatic ecosystems, due to its rapid life cycle, dispersal capacities, burrowing activities and high population densities. The species has even been recently discovered in caves. This invasive crayfish is a polytrophic keystone species that can exert multiple pressures on ecosystems. Most studies deal with the decline of macrophytes and predation on several species (amphibians, molluscs, and macroinvertebrates), highlighting how this biodiversity loss leads to unbalanced food chains. At a management level, the species is considered as (a) a devastating digger of the water drainage systems in southern and central Europe, (b) an agricultural pest in Mediterranean territories, consuming, for example, young rice plants, and (c) a threat to the restoration of water bodies in north-western Europe. Indeed, among the high-risk species, P. clarkii consistently attained the highest risk rating. Its negative impacts on ecosystem services were evaluated. These may include the loss of provisioning services such as reductions in valued edible native species of regulatory and supporting services, inducing wide changes in ecological communities and increased costs to agriculture and water management. Finally, cultural services may be lost. The species fulfils the criteria of the Article 4(3) of Regulation (EU) No 1143/2014 of the European Parliament (species widely spread in Europe and impossible to eradicate in a cost-effective manner) and has been included in the “Union List”. Particularly, awareness of the ornamental trade through the internet must be reinforced within the European Community and import and trade regulations should be imposed to reduce the availability of this high-risk species.
Resumo:
The soil carries out a wide range of functions and it is important study the effects of land use on soil quality in order to provide most sustainable practices. Three fields trial have been considered to assess soil quality and functionality after human alteration, and to determine the power of soil enzymatic activities, biochemical indexes and mathematical model in the evaluation of soil status. The first field was characterized by conventional and organic management in which were tested also tillage effects. The second was characterized by conventional, organic and agro-ecological management. Finally, the third was a beech forest where was tested the effects of N deposition on soil organic carbon sequestration. Results highlight that both enzyme activities and biochemical indexes could be valid parameters for soil quality evaluation. Conventional management and plowing negatively affected soil quality and functionality with intensive tillage that lead to the downturn of microbial biomass and activity. Both organic and agro-ecological management revealed to be good practices for the maintenance of soil functionality with better microbial activity and metabolic efficiency. This positively affected also soil organic carbon content. At the eutrophic forest, enzyme activities and biochemical indexes positively respond to the treatments but one year of experimentation resulted to be not enough to observe variation in soil organic carbon content. Mathematical models and biochemical indicators resulted to be valid tools for assess soil quality, nonetheless it would be better including the microbial component in the mathematical model and consider more than one index if the aim of the work is to evaluate the overall soil quality and functionality. Concluding, the forest site is the richest one in terms of organic carbon, microbial biomass and activity while, the organic and the agro-ecological management seem to be the more sustainable but without taking in consideration the yield.
Resumo:
Free-living or host-associated marine microbiomes play a determinant role in supporting the functioning and biodiversity of marine ecosystems, providing essential ecological services, and promoting the health of the entire biosphere. Currently, the fast and restless increase of World’s human population strongly impacts life on Earth in the forms of ocean pollution, coastal zone destruction, overexploitation of marine resources, and climate change. Thanks to their phylogenetic, metabolic, and functional diversity, marine microbiomes represent the Earth’s biggest reservoir of solutions against the major threats that are now impacting marine ecosystems, possibly providing valuable insights for biotechnological applications to preserve the health of the ocean ecosystems. Microbial-based mitigation strategies heavily rely on the available knowledge on the specific role and composition of holobionts associated microbial communities, thus highlighting the importance of pioneer studies on microbial-mediated adaptive mechanisms in the marine habitats. In this context, we propose different models representing ecologically important, widely distributed, and habitat-forming organisms, to further investigate the ability of marine holobionts to dynamically adapt to natural environmental variations, as well as to anthropogenic stress factors. In this PhD thesis, we were able to supply the characterization of the microbial community associated with the model anthozoan cnidaria Corynactis viridis throughout a seasonal gradient, to provide critical insights into microbiome-host interactions in a biomonitoring perspective. We also dissected in details the microbial-derived mitigation strategies implemented by the benthonic anthozoan Anemonia viridis and the gastropod Patella caerulea as models of adaptation to anthropogenic stressors, in the context of bioremediation of human-impacted habitats and for the monitoring and preservation of coastal marine ecosystems, respectively. Finally, we provided a functional model of adaptation to future ocean acidification conditions by characterizing the microbial community associated with the temperate coral Balanophyllia europaea naturally living at low pH conditions, to implement microbial based actions to mitigate climate change.
Resumo:
The advent of Bitcoin suggested a disintermediated economy in which Internet users can take part directly. The conceptual disruption brought about by this Internet of Money (IoM) mirrors the cross-industry impacts of blockchain and distributed ledger technologies (DLTs). While related instances of non-centralisation thwart regulatory efforts to establish accountability, in the financial domain further challenges arise from the presence in the IoM of two seemingly opposing traits: anonymity and transparency. Indeed, DLTs are often described as architecturally transparent, but the perceived level of anonymity of cryptocurrency transfers fuels fears of illicit exploitation. This is a primary concern for the framework to prevent money laundering and the financing of terrorism and proliferation (AML/CFT/CPF), and a top priority both globally and at the EU level. Nevertheless, the anonymous and transparent features of the IoM are far from clear-cut, and the same is true for its levels of disintermediation and non-centralisation. Almost fifteen years after the first Bitcoin transaction, the IoM today comprises a diverse set of socio-technical ecosystems. Building on an analysis of their phenomenology, this dissertation shows how there is more to their traits of anonymity and transparency than it may seem, and how these features range across a spectrum of combinations and degrees. In this context, trade-offs can be evaluated by referring to techno-legal benchmarks, established through socio-technical assessments grounded on teleological interpretation. Against this backdrop, this work provides framework-level recommendations for the EU to respond to the twofold nature of the IoM legitimately and effectively. The methodology cherishes the mutual interaction between regulation and technology when drafting regulation whose compliance can be eased by design. This approach mitigates the risk of overfitting in a fast-changing environment, while acknowledging specificities in compliance with the risk-based approach that sits at the core of the AML/CFT/CPF regime.
Resumo:
The current climate crisis requires a comprehensive understanding of biodiversity to acknowledge how ecosystems’ responses to anthropogenic disturbances may result in feedback that can either mitigate or exacerbate global warming. Although ecosystems are dynamic and macroecological patterns change drastically in response to disturbance, dynamic macroecology has received insufficient attention and theoretical formalisation. In this context, the maximum entropy principle (MaxEnt) could provide an effective inference procedure to study ecosystems. Since the improper usage of entropy outside its scope often leads to misconceptions, the opening chapter will clarify its meaning by following its evolution from classical thermodynamics to information theory. The second chapter introduces the study of ecosystems from a physicist’s viewpoint. In particular, the MaxEnt Theory of Ecology (METE) will be the cornerstone of the discussion. METE predicts the shapes of macroecological metrics in relatively static ecosystems using constraints imposed by static state variables. However, in disturbed ecosystems with macroscale state variables that change rapidly over time, its predictions tend to fail. In the final chapter, DynaMETE is therefore presented as an extension of METE from static to dynamic. By predicting how macroecological patterns are likely to change in response to perturbations, DynaMETE can contribute to a better understanding of disturbed ecosystems’ fate and the improvement of conservation and management of carbon sinks, like forests. Targeted strategies in ecosystem management are now indispensable to enhance the interdependence of human well-being and the health of ecosystems, thus avoiding climate change tipping points.
Resumo:
The taxonomic status of a disjunctive population of Phyllomedusa from southern Brazil was diagnosed using molecular, chromosomal, and morphological approaches, which resulted in the recognition of a new species of the P. hypochondrialis group. Here, we describe P. rustica sp. n. from the Atlantic Forest biome, found in natural highland grassland formations on a plateau in the south of Brazil. Phylogenetic inferences placed P. rustica sp. n. in a subclade that includes P. rhodei + all the highland species of the clade. Chromosomal morphology is conservative, supporting the inference of homologies among the karyotypes of the species of this genus. Phyllomedusa rustica is apparently restricted to its type-locality, and we discuss the potential impact on the strategies applied to the conservation of the natural grassland formations found within the Brazilian Atlantic Forest biome in southern Brazil. We suggest that conservation strategies should be modified to guarantee the preservation of this species.
Resumo:
Polymeric nanoparticles have been developed for several applications, among them as carrier system of pesticides. However, few studies have investigated the fate of these materials in the environment in relation to colloidal stability and toxicity. In nature, humic substances are the main agents responsible for complexation with metals and organic compounds, as well as responsible for the dynamics of these nanoparticles in aquatic and terrestrial environments. In this context, the evaluation of the influence of aquatic humic substances (AHS) on the colloidal stability and toxicity of polymeric nanoparticles of chitosan/tripolyphosphate with or without paraquat was performed. In this study, the nanoparticles were prepared by the ionic gelation method and characterized by size distribution measurements (DLS and NTA), zeta potential, infrared and fluorescence spectroscopy. Allium cepa genotoxicity studies and ecotoxicity assays with the alga Pseudokirchneriella subcapitata were used to investigate the effect of aquatic humic substances (AHS) on the toxicity of this delivery system. No changes were observed in the physical-chemical stability of the nanoparticles due to the presence of AHS using DLS and NTA techniques. However some evidence of interaction between the nanoparticles and AHS was observed by infrared and fluorescence spectroscopies. The ecotoxicity and genotoxicity assays showed that humic substances can decrease the toxic effects of nanoparticles containing paraquat. These results are interesting because they are important for understanding the interaction of these nanostructured carrier systems with species present in aquatic ecosystems such as humic substances, and in this way, opening new perspectives for studies on the dynamics of these carrier systems in the ecosystem.
Resumo:
Quantifying global patterns of terrestrial nitrogen (N) cycling is central to predicting future patterns of primary productivity, carbon sequestration, nutrient fluxes to aquatic systems, and climate forcing. With limited direct measures of soil N cycling at the global scale, syntheses of the (15)N:(14)N ratio of soil organic matter across climate gradients provide key insights into understanding global patterns of N cycling. In synthesizing data from over 6000 soil samples, we show strong global relationships among soil N isotopes, mean annual temperature (MAT), mean annual precipitation (MAP), and the concentrations of organic carbon and clay in soil. In both hot ecosystems and dry ecosystems, soil organic matter was more enriched in (15)N than in corresponding cold ecosystems or wet ecosystems. Below a MAT of 9.8°C, soil δ(15)N was invariant with MAT. At the global scale, soil organic C concentrations also declined with increasing MAT and decreasing MAP. After standardizing for variation among mineral soils in soil C and clay concentrations, soil δ(15)N showed no consistent trends across global climate and latitudinal gradients. Our analyses could place new constraints on interpretations of patterns of ecosystem N cycling and global budgets of gaseous N loss.
Mineral Nutrition Of Campos Rupestres Plant Species On Contrasting Nutrient-impoverished Soil Types.
Resumo:
In Brazil, the campos rupestres occur over the Brazilian shield, and are characterized by acidic nutrient-impoverished soils, which are particularly low in phosphorus (P). Despite recognition of the campos rupestres as a global biodiversity hotspot, little is known about the diversity of P-acquisition strategies and other aspects of plant mineral nutrition in this region. To explore nutrient-acquisition strategies and assess aspects of plant P nutrition, we measured leaf P and nitrogen (N) concentrations, characterized root morphology and determined the percentage arbuscular mycorrhizal (AM) colonization of 50 dominant species in six communities, representing a gradient of soil P availability. Leaf manganese (Mn) concentration was measured as a proxy for carboxylate-releasing strategies. Communities on the most P-impoverished soils had the highest proportion of nonmycorrhizal (NM) species, the lowest percentage of mycorrhizal colonization, and the greatest diversity of root specializations. The large spectrum of leaf P concentration and variation in root morphologies show high functional diversity for nutritional strategies. Higher leaf Mn concentrations were observed in NM compared with AM species, indicating that carboxylate-releasing P-mobilizing strategies are likely to be present in NM species. The soils of the campos rupestres are similar to the most P-impoverished soils in the world. The prevalence of NM strategies indicates a strong global functional convergence in plant mineral nutrition strategies among severely P-impoverished ecosystems.