823 resultados para Graph-based approach
Resumo:
Determination of the environmental factors controlling earth surface processes and landform patterns is one of the central themes in physical geography. However, the identification of the main drivers of the geomorphological phenomena is often challenging. Novel spatial analysis and modelling methods could provide new insights into the process-environment relationships. The objective of this research was to map and quantitatively analyse the occurrence of cryogenic phenomena in subarctic Finland. More precisely, utilising a grid-based approach the distribution and abundance of periglacial landforms were modelled to identify important landscape scale environmental factors. The study was performed using a comprehensive empirical data set of periglacial landforms from an area of 600 km2 at a 25-ha resolution. The utilised statistical methods were generalized linear modelling (GLM) and hierarchical partitioning (HP). GLMs were used to produce distribution and abundance models and HP to reveal independently the most likely causal variables. The GLM models were assessed utilising statistical evaluation measures, prediction maps, field observations and the results of HP analyses. A total of 40 different landform types and subtypes were identified. Topographical, soil property and vegetation variables were the primary correlates for the occurrence and cover of active periglacial landforms on the landscape scale. In the model evaluation, most of the GLMs were shown to be robust although the explanation power, prediction ability as well as the selected explanatory variables varied between the models. The great potential of the combination of a spatial grid system, terrain data and novel statistical techniques to map the occurrence of periglacial landforms was demonstrated in this study. GLM proved to be a useful modelling framework for testing the shapes of the response functions and significances of the environmental variables and the HP method helped to make better deductions of the important factors of earth surface processes. Hence, the numerical approach presented in this study can be a useful addition to the current range of techniques available to researchers to map and monitor different geographical phenomena.
Resumo:
Many conventional statistical machine learning al- gorithms generalise poorly if distribution bias ex- ists in the datasets. For example, distribution bias arises in the context of domain generalisation, where knowledge acquired from multiple source domains need to be used in a previously unseen target domains. We propose Elliptical Summary Randomisation (ESRand), an efficient domain generalisation approach that comprises of a randomised kernel and elliptical data summarisation. ESRand learns a domain interdependent projection to a la- tent subspace that minimises the existing biases to the data while maintaining the functional relationship between domains. In the latent subspace, ellipsoidal summaries replace the samples to enhance the generalisation by further removing bias and noise in the data. Moreover, the summarisation enables large-scale data processing by significantly reducing the size of the data. Through comprehensive analysis, we show that our subspace-based approach outperforms state-of-the-art results on several activity recognition benchmark datasets, while keeping the computational complexity significantly low.
Resumo:
In this paper, we present a new feature-based approach for mosaicing of camera-captured document images. A novel block-based scheme is employed to ensure that corners can be reliably detected over a wide range of images. 2-D discrete cosine transform is computed for image blocks defined around each of the detected corners and a small subset of the coefficients is used as a feature vector A 2-pass feature matching is performed to establish point correspondences from which the homography relating the input images could be computed. The algorithm is tested on a number of complex document images casually taken from a hand-held camera yielding convincing results.
Resumo:
This paper estimates the extent of income underreporting by the self-employed in Finland using the expenditure based approach developed by Pissarides & Weber (1989). Household spending data are for the years 1994 to 1996. The results suggest that self-employment income in Finland is underreported by some 27% on average. Since income for the self-employed is about 8 % of all incomes in Finland, the size of this part of the black economy in Finland is estimated to be about 2,3% of GDP.
Resumo:
An important issue in the design of a distributed computing system (DCS) is the development of a suitable protocol. This paper presents an effort to systematize the protocol design procedure for a DCS. Protocol design and development can be divided into six phases: specification of the DCS, specification of protocol requirements, protocol design, specification and validation of the designed protocol, performance evaluation, and hardware/software implementation. This paper describes techniques for the second and third phases, while the first phase has been considered by the authors in their earlier work. Matrix and set theoretic based approaches are used for specification of a DCS and for specification of the protocol requirements. These two formal specification techniques form the basis of the development of a simple and straightforward procedure for the design of the protocol. The applicability of the above design procedure has been illustrated by considering an example of a computing system encountered on board a spacecraft. A Petri-net based approach has been adopted to model the protocol. The methodology developed in this paper can be used in other DCS applications.
Resumo:
A novel approach to estimate fringe order in Moire topography is proposed. Along with the light source used to create shadow of the grating on the object (as in conventional moire), proposed method uses a second light source which illuminates the object with color bands from the side. Width of each colored band is set to match that height which leads to a 2 pi phase shift in moire fringes. This facilitates one to rule the object with colored bands, which can be used to estimate fringe order using a color camera with relatively low spatial resolution with out any compromise in height sensitivity. Current proposal facilitates one to extract 3D profile of objects with surface discontinuities. It also deals with the possible usage of moire topography (when combined with the proposed method) in extracting 3D surface profile of many objects with height discontinuities using a single 2D image. Present article deals with theory and simulations of this novel side illumination based approach.
Resumo:
Genetic Algorithms are robust search and optimization techniques. A Genetic Algorithm based approach for determining the optimal input distributions for generating random test vectors is proposed in the paper. A cost function based on the COP testability measure for determining the efficacy of the input distributions is discussed, A brief overview of Genetic Algorithms (GAs) and the specific details of our implementation are described. Experimental results based on ISCAS-85 benchmark circuits are presented. The performance pf our GA-based approach is compared with previous results. While the GA generates more efficient input distributions than the previous methods which are based on gradient descent search, the overheads of the GA in computing the input distributions are larger. To account for the relatively quick convergence of the gradient descent methods, we analyze the landscape of the COP-based cost function. We prove that the cost function is unimodal in the search space. This feature makes the cost function amenable to optimization by gradient-descent techniques as compared to random search methods such as Genetic Algorithms.
Resumo:
In this paper, we consider the application of belief propagation (BP) to achieve near-optimal signal detection in large multiple-input multiple-output (MIMO) systems at low complexities. Large-MIMO architectures based on spatial multiplexing (V-BLAST) as well as non-orthogonal space-time block codes(STBC) from cyclic division algebra (CDA) are considered. We adopt graphical models based on Markov random fields (MRF) and factor graphs (FG). In the MRF based approach, we use pairwise compatibility functions although the graphical models of MIMO systems are fully/densely connected. In the FG approach, we employ a Gaussian approximation (GA) of the multi-antenna interference, which significantly reduces the complexity while achieving very good performance for large dimensions. We show that i) both MRF and FG based BP approaches exhibit large-system behavior, where increasingly closer to optimal performance is achieved with increasing number of dimensions, and ii) damping of messages/beliefs significantly improves the bit error performance.
Resumo:
Numerical modeling of several turbulent nonreacting and reacting spray jets is carried out using a fully stochastic separated flow (FSSF) approach. As is widely used, the carrier-phase is considered in an Eulerian framework, while the dispersed phase is tracked in a Lagrangian framework following the stochastic separated flow (SSF) model. Various interactions between the two phases are taken into account by means of two-way coupling. Spray evaporation is described using a thermal model with an infinite conductivity in the liquid phase. The gas-phase turbulence terms are closed using the k-epsilon model. A novel mixture fraction based approach is used to stochastically model the fluctuating temperature and composition in the gas phase and these are then used to refine the estimates of the heat and mass transfer rates between the droplets and the surrounding gas-phase. In classical SSF (CSSF) methods, stochastic fluctuations of only the gas-phase velocity are modeled. Successful implementation of the FSSF approach to turbulent nonreacting and reacting spray jets is demonstrated. Results are compared against experimental measurements as well as with predictions using the CSSF approach for both nonreacting and reacting spray jets. The FSSF approach shows little difference from the CSSF predictions for nonreacting spray jets but differences are significant for reacting spray jets. In general, the FSSF approach gives good predictions of the flame length and structure but further improvements in modeling may be needed to improve the accuracy of some details of the Predictions. (C) 2011 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
Resumo:
We address the problem of robust formant tracking in continuous speech in the presence of additive noise. We propose a new approach based on mixture modeling of the formant contours. Our approach consists of two main steps: (i) Computation of a pyknogram based on multiband amplitude-modulation/frequency-modulation (AM/FM) decomposition of the input speech; and (ii) Statistical modeling of the pyknogram using mixture models. We experiment with both Gaussian mixture model (GMM) and Student's-t mixture model (tMM) and show that the latter is robust with respect to handling outliers in the pyknogram data, parameter selection, accuracy, and smoothness of the estimated formant contours. Experimental results on simulated data as well as noisy speech data show that the proposed tMM-based approach is also robust to additive noise. We present performance comparisons with a recently developed adaptive filterbank technique proposed in the literature and the classical Burg's spectral estimator technique, which show that the proposed technique is more robust to noise.
Assessment of seismic hazard and liquefaction potential of Gujarat based on probabilistic approaches
Resumo:
Gujarat is one of the fastest-growing states of India with high industrial activities coming up in major cities of the state. It is indispensable to analyse seismic hazard as the region is considered to be most seismically active in stable continental region of India. The Bhuj earthquake of 2001 has caused extensive damage in terms of causality and economic loss. In the present study, the seismic hazard of Gujarat evaluated using a probabilistic approach with the use of logic tree framework that minimizes the uncertainties in hazard assessment. The peak horizontal acceleration (PHA) and spectral acceleration (Sa) values were evaluated for 10 and 2 % probability of exceedance in 50 years. Two important geotechnical effects of earthquakes, site amplification and liquefaction, are also evaluated, considering site characterization based on site classes. The liquefaction return period for the entire state of Gujarat is evaluated using a performance-based approach. The maps of PHA and PGA values prepared in this study are very useful for seismic hazard mitigation of the region in future.
Resumo:
In this letter, we characterize the extrinsic information transfer (EXIT) behavior of a factor graph based message passing algorithm for detection in large multiple-input multiple-output (MIMO) systems with tens to hundreds of antennas. The EXIT curves of a joint detection-decoding receiver are obtained for low density parity check (LDPC) codes of given degree distributions. From the obtained EXIT curves, an optimization of the LDPC code degree profiles is carried out to design irregular LDPC codes matched to the large-MIMO channel and joint message passing receiver. With low complexity joint detection-decoding, these codes are shown to perform better than off-the-shelf irregular codes in the literature by about 1 to 1.5 dB at a coded BER of 10(-5) in 16 x 16, 64 x 64 and 256 x 256 MIMO systems.
Resumo:
The problem of designing good space-time block codes (STBCs) with low maximum-likelihood (ML) decoding complexity has gathered much attention in the literature. All the known low ML decoding complexity techniques utilize the same approach of exploiting either the multigroup decodable or the fast-decodable (conditionally multigroup decodable) structure of a code. We refer to this well-known technique of decoding STBCs as conditional ML (CML) decoding. In this paper, we introduce a new framework to construct ML decoders for STBCs based on the generalized distributive law (GDL) and the factor-graph-based sum-product algorithm. We say that an STBC is fast GDL decodable if the order of GDL decoding complexity of the code, with respect to the constellation size, is strictly less than M-lambda, where lambda is the number of independent symbols in the STBC. We give sufficient conditions for an STBC to admit fast GDL decoding, and show that both multigroup and conditionally multigroup decodable codes are fast GDL decodable. For any STBC, whether fast GDL decodable or not, we show that the GDL decoding complexity is strictly less than the CML decoding complexity. For instance, for any STBC obtained from cyclic division algebras which is not multigroup or conditionally multigroup decodable, the GDL decoder provides about 12 times reduction in complexity compared to the CML decoder. Similarly, for the Golden code, which is conditionally multigroup decodable, the GDL decoder is only half as complex as the CML decoder.
Resumo:
A wave propagation based approach for the detection of damage in components of structures having periodic damage has been proposed. Periodic damage pattern may arise in a structure due to periodicity in geometry and in loading. The method exploits the Block-Floquet band formation mechanism, a feature specific to structures with periodicity, to identify propagation bands (pass bands) and attenuation bands (stop bands) at different frequency ranges. The presence of damage modifies the wave propagation behaviour forming these bands. With proper positioning of sensors a damage force indicator (DFI) method can be used to locate the defect at an accuracy level of sensor to sensor distance. A wide range of transducer frequency may be used to obtain further information about the shape and size of the damage. The methodology is demonstrated using a few 1-D structures with different kinds of periodicity and damage. For this purpose, dynamic stiffness matrix is formed for the periodic elements to obtain the dispersion relationship using frequency domain spectral element and spectral super element method. The sensitivity of the damage force indicator for different types of periodic damages is also analysed.
Resumo:
The Lovasz θ function of a graph, is a fundamental tool in combinatorial optimization and approximation algorithms. Computing θ involves solving a SDP and is extremely expensive even for moderately sized graphs. In this paper we establish that the Lovasz θ function is equivalent to a kernel learning problem related to one class SVM. This interesting connection opens up many opportunities bridging graph theoretic algorithms and machine learning. We show that there exist graphs, which we call SVM−θ graphs, on which the Lovasz θ function can be approximated well by a one-class SVM. This leads to a novel use of SVM techniques to solve algorithmic problems in large graphs e.g. identifying a planted clique of size Θ(n√) in a random graph G(n,12). A classic approach for this problem involves computing the θ function, however it is not scalable due to SDP computation. We show that the random graph with a planted clique is an example of SVM−θ graph, and as a consequence a SVM based approach easily identifies the clique in large graphs and is competitive with the state-of-the-art. Further, we introduce the notion of a ''common orthogonal labeling'' which extends the notion of a ''orthogonal labelling of a single graph (used in defining the θ function) to multiple graphs. The problem of finding the optimal common orthogonal labelling is cast as a Multiple Kernel Learning problem and is used to identify a large common dense region in multiple graphs. The proposed algorithm achieves an order of magnitude scalability compared to the state of the art.