975 resultados para Ethanol Fermentation
Resumo:
O uso de resíduos da indústria canavieira, em particular o bagaço, é tema que ganha relevância desde a retomada do mercado de biocombustíveis, quando a produção ampliou significativamente o volume daquela biomassa. Existem trabalhos que tratam de apresentar subprodutos e tecnologias alternativas para o uso deste material e um conjunto outro de trabalhos apresenta análise de cenários de viabilidade econômica destas tecnologias. O objetivo deste trabalho é avaliar pela perspectiva econômico-financeira o melhor uso do bagaço da cana em um caso real. Para isto foi utilizada a Teoria das Opções Reais, como forma de analisar a melhor destinação do bagaço no horizonte de tempo de cinco anos, em uma dada a região, em um estudo de caso de uma usina sucroenergética com possibilidade de produção de etanol de segunda geração e/ou venda do bagaço in natura. Desta forma concluiu-se no caso apresentado que a produção de etanol de segunda geração em escala industrial não atrai investimentos e, sob esta ótica, deve ser postergada pois requer significativa aumento de produtividade por tonelada de matéria seca, além de substancial redução no custo das enzimas de fermentação. Ainda, foi possível também identificar a necessidade de políticas de incentivo para atração de investimentos.
Resumo:
This article presents the application of a diagnosis method in a Brazilian company from the sugar and ethanol industry to identify the level of supply chain integration. The diagnosis method is based on Cooper, Lambert and Pagh reference model for SCM. The method involves nine referential axes established from the eighth key business processes of the reference model.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The effects of age on microbiota composition, gut fermentation end-product formation and peripheral lymphocyte numbers were compared between old and young adult Beagle dogs fed four kibble diets differing in yeast cell wall contents. The experiment had a double 4 x 4 Latin square design, one with four mature dogs (4 years old) and the other with four old dogs (10 years old), with four replicates (diets) per dog. In each period a 15d adaptation period preceded a 5d total collection of faeces for the digestibility trial. on day 21, fresh faecal samples were collected for the determination of bacterial enumeration, pH, biogenic amine and short-chain fatty acid. Flow cytometry was used for immunophenotypic evaluation. Dogs were fed four kibble diets with similar composition with 0, 0.15, 0.30 and 0.45% of yeast cell wall (as-fed), respectively. Data were evaluated using general linear models of Statistical Analysis Systems statistical software (P<0.05). No evidence of a difference in faecal bacteria counts between ages was found (total aerobes, total anaerobes, Bifidobacterium, Lactobacillus, Clostridium and Escherichia coli: P. 0.15). Faecal concentrations of butyrate, histamine, agmatine and spermine were lower (P <= 0.05) and faecal pH was higher (P=0.03) in older dogs than in mature adult dogs, suggesting an alteration in bacterial metabolic activity, or in the rate of intestinal absorption of these compounds. Concentrations of T-lymphocytes, T-cytotoxic lymphocytes and B-lymphocytes were also lower (P <= 0.01) in older dogs than in mature adult dogs. The study confirmed alterations in peripheral lymphocytes and revealed a reduced concentration of some fermentation end products in the colon of old dogs.
Resumo:
Efficient artificial activation is indispensable for the success of cloning programs. Strontium has been shown to effectively activate mouse oocytes for nuclear transfer procedures, however, there is limited information on its use for bovine oocytes. The present study had as objectives: (1) to assess the ability of strontium to induce activation and parthenogenetic development in bovine oocytes of different maturational ages in comparison with ethanol; and (2) to verify whether the combination of both treatments improves activation and parthenogenetic development rates. Bovine oocytes were in vitro matured for 24, 26, 28, and 30 h, and treated with ethanol (E, 7% for 5 min) or strontium chloride (S, 10 mM SrCl2 for 5 h) alone or in combination: ethanol + strontium (ES) and strontium + ethanol (SE). Activated oocytes were cultured in vitro in synthetic oviductal fluid (SOF) medium and assessed for pronuclear formation (15-16 h), cleavage (46-48 h) and development to the blastocyst stage (M). Treatment with ethanol and strontium promoted similar results regarding pronuclear formation (E, 20-66.7%; S, 26.7-53.3%; P > 0.05) and cleavage (E, 12.8-40.6%; S, 16.1-41.9%; P > 0.05), regardless of oocyte age. The actions of both strontium and ethanol were influenced by oocyte age: ethanol induced greater activation rates after 28 and 30 h of maturation (48.4 and 66.7% versus 20.0 and 23.3% for 24 and 26 It, respectively; P < 0.05) and strontium after 30 It (53.3%) was superior to 24 and 26h (26.7% for both). Blastocyst development rates were minimal in all treatments (0.0-6.3%; P > 0.05), however, when the mean (+/-S.D.) cell number in blastocysts at the same maturational period was compared, strontium treatment was superior to ethanol for activation rates (82 +/- 5.7 and 89.5 +/- 7.8 versus 54 and 61, at 28 and 30 h, respectively). Improved results were obtained by combined treatments. The combination of ethanol and strontium resulted in similar pronuclear formation (ES, 36.7-83.9%; SE, 53.1-90.3%) and cleavage rates (ES, 31.3-81.3%; SE, 65.6-80.7%). Regarding embryo development, there was no difference (P > 0.05) between treatments, and blastocysts were only obtained in treatment SE at 24 and 26 h (6.5% for both). It is concluded that, SrCl2 induces activation and parthenogenetic development in bovine oocytes. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fermentation and aerobic stability were evaluated in high-moisture corn (HMC) silage inoculated with different levels of Lactobacillus buchneri. The HMC composed of 654 g/kg dry matter (DM) was ensiled in quadruplicate laboratory silos (7 L) per treatment. L. buchneri 40788 was applied at 5 × 10(4); 1 × 10(5); 5 × 10(5); and 1 × 10(6) cfu/g to the ground corn. Silages with no additive were used as controls. After 140 d of ensiling, the silages were subjected to an aerobic stability evaluation for 12 days in which the chemical parameters, microbiological parameters and silage temperature were measured to determine the aerobic deterioration. The lactic acid, acetic acid and propionic acid concentrations did not differ between silages. The fermentation parameters of HMC were not affected by L. buchneri. The HMC containing L. buchneri had a low number of yeast and mould colonies and a more stable pH until in the eighth measurement, which improved the aerobic stability without affecting gas loss. Doses of L. buchneri greater than or equal to 5 × 10(5) cfu/g applied to the HMC were the most efficient in control of aerobic deterioration.
Resumo:
The characteristics of fermentation and aerobic stability were evaluated in corn silage inoculated with different doses of Lactobacillus buchneri. The whole corn plant (300 g/kg DM) was ensiled in quadruplicate laboratory silos (7L). L. buchneri 40788 was applied at 5×10(4), 1×10(5), 5×10(5) and 1×10(6) cfu/g of fresh forage. Silages with no additive were used as controls. After 130 d of ensiling, the silages were subjected to an aerobic stability evaluation for 12 days, in which chemical and microbiological parameters as well as the temperature of the silage were measured to determine the aerobic deterioration. The addition of L. buchneri resulted in increased acetic acid concentrations. The number of yeast colonies was low in all treated silages. The pH, lactic and propionic acid concentrations did not differ between silages. Under aerobic conditions, all the treated silages showed a low number of yeasts and a great aerobic stability. Therefore, L. buchneri is effective against yeasts and improves the aerobic stability of corn silage in laboratory silos. However, doses equal or superior to 1×10(5) cfu/g of fresh forage were more efficient in the control of aerobic spoilage.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The objective of this research was to evaluate the effect of three concentrations (3, 6, and 9%) of forage turnip (Raphanus sativus) and physic nut (Jatropha curcas) cakes on dry matter, crude protein, ether extract, neutral detergent fiber, acid detergent fiber, lignin, acid detergent insoluble nitrogen neutral detergent insoluble nitrogen contents, in vitro dry matter digestibility, pH values and concentrations of N-NH3 in elephant grass silages. It was used an entirely randomized design in factorial arrangement [(2x3)+1]. Experimental PVC silos were used and ensiled material was kept for 62 days. The addition of cakes increased the dry matter contents (P<0.05). The fibrous fractions were reduced (P<0.05) with the inclusion of cakes during the grass ensilage and the CP contents increased (P<0.05). The forage turnip cake provided the same pH and N-NH3 values in ideal levels and the physic nut, added to 9%, increased those values (P<0.05). IVDMD was reduced (P<0.05) when the cakes were added. These co-products can be used in small amounts for elephant grass ensilage in order to provide improvement in chemical and fermentation characteristics of the silages. Nevertheless, physic nut cake shows limitations for its use in animal feeding due to the presence of toxic compounds, making necessary studies for their identification and elimination.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The liquid of the rind of green coconut (LCCV), an effluent stream from the industrial processing of green coconut rind, is rich in sugars and is a suitable feedstock for fermentation. The first step of this study was to evaluate the potential of natural fermentation of LCCV. As the literature did not provide any information about LCCV and due to the difficulty of working with such an organic effluent, the second step was to characterize the LCCV and to develop a synthetic medium to explore its potential as a bioprocess diluent. The third step was to evaluate the influence of initial condensed and hydrolysable tannins on alcoholic fermentation. The last step of this work was divided into several stages: in particular to evaluate (1) the influence of the inoculum, temperature and agitation on the fermentation process, (2) the carbon source and the use of LCCV as diluent, (3) the differences between natural and synthetic fermentation of LCCV, in order to determine the best process conditions. Characterization of LCCV included analyses of the physico-chemical properties as well as the content of DQO, DBO and series of solids. Fermentation was carried out in bench-scale bioreactors using Saccharomyces cerevisiae as inoculum, at a working volume of 5L and using 0.30% of soy oil as antifoam. During fermentations, the effects of different initial sugars concentrations (10 - 20%), yeast concentrations (5 and 7.5%), temperatures (30 - 50°C) and agitation rates (400 and 500 rpm) on pH/sugars profiles and ethanol production were evaluated. The characterization of LCCV demonstrated the complexity and variability of the liquid. The best conditions for ethanol conversion were (1) media containing 15% of sugar; (2) 7.5% yeast inoculum; (3) temperature set point of 40°C and (4) an agitation rate of 500 rpm, which resulted in an ethanol conversion rate of 98% after 6 hours of process. A statistical comparison of results from natural and synthetic fermentation of LCCV showed that both processes are similar
Resumo:
Nowadays generation ethanol second, that t is obtained from fermentation of sugars of hydrolyses of cellulose, is gaining attention worldwide as a viable alternative to petroleum mainly for being a renewable resource. The increase of first generation ethanol production i.e. that obtained from sugar-cane molasses could lead to a reduction of lands sustainable for crops and food production. However, second generation ethanol needs technologic pathway for reduce the bottlenecks as production of enzymes to hydrolysis the cellulose to glucose i.e. the cellulases as well as the development of efficient biomass pretreatment and of low-cost. In this work Trichoderma reesei ATCC 2768 was cultivated under submerged fermentation to produce cellulases using as substrates waste of lignocellulosic material such as cashew apple bagasse as well as coconut bagasse with and without pretreatment. For pretreatment the bagasses were treated with 1 M NaOH and by explosion at high pressure. Enzyme production was carried out in shaker (temperature of 27ºC, 150 rpm and initial medium pH of 4.8). Results showed that T.reesei ATCC 2768 showed the higher cellulase production when the cashew apple bagasse was treated with 1M NaOH (2.160 UI/mL of CMCase and 0.215 UI/mL of FPase), in which the conversion of cellulose, in terms of total reducing sugars, was of 98.38%, when compared to pretreatment by explosion at high pressure (0.853 UI/mL of CMCase and 0.172 UI/mL of Fpase) showing a conversion of 47.39% of total reducing sugars. Cellulase production is lower for the medium containing coconut bagasse treated with 1M NaOH (0.480 UI/mL of CMcase and 0.073 UI/mL of FPase), giving a conversion of 49.5% in terms of total reducing sugars. Cashew apple bagasse without pretreatment showed cellulase activities lower (0.535 UI/mL of CMCase and 0,152 UI/mL of FPase) then pretreated bagasse while the coconut bagasse without pretreatment did not show any enzymatic activity. Maximum cell concentration was obtained using cashew nut bagasse as well as coconut shell bagasse treated with 1M NaOH, with 2.92 g/L and 1.97 g/L, respectively. These were higher than for the experiments in which the substrates were treated by explosion at high pressure, 1.93 g/L and 1.17 g/L. Cashew apple is a potential inducer for cellulolytic enzymes synthysis showing better results than coconut bagasse. Pretreatment improves the process for the cellulolytic enzyme production
Resumo:
Cellulolytic enzymatic broth by Trichoderma reesei ATCC 2768 cultived in shaker using cashew apple bagasse and coconut shell bagasse, as substrate for fermentation, was used to investigate the enzymatic hydrolysis of these substrates after pre-treatment with 1 M NaOH, wet-oxidation as well as a combination of these treatments. Hydrolysis runs were carried at 125 rpm, 50ºC and initial pH of 4.8 for 108 hours. Enzymatic broth produced using cashew apple bagasse treated with 1M NaOH (1.337 UI/mL CMCase and 0.074 UI/mL FPase), showed after the hydrolysis an initial of 0.094 g of reducing sugar/g of substrate.h with 96% yield of total reducing sugars while for the coconut shell bagasse treated using the alkaline process (0.640 UI/mL CMCase and 0.070 UI/mL FPase) exhibited an initial hydrolysis velocity of 0.025 g of reducing sugar/g of substrate.h with 48% yield of total reducing sugars. For the treatment with wet-oxidation using cashew apple bagasse as substrate enzymatic broth (0.547 UI/mL CMCase) exhibited an initial hydrolysis velocity of 0.014 g of reducing sugars/g of substrate.h with a lower yield about 89% of total reducing sugars compared to the alkaline treatment. Enzymatic broth produced using coconut shell treated by wet-oxidation showed an initial hydrolysis velocity of 0.029 g of reducing sugar/g of substrate.h with 91% yield. However, when the combination of these two treatments were used it was obtained an enzymatic broth of 1.154 UI/mL CMCase and 0.107 FPase for the cashew apple bagasse as well as 0.538 UI/mL CMCase and 0,013 UI/mL de FPase for the coconut shell bagasse. After hydrolysis, initial velocity was 0.029 g of reducing sugar/g of substrate.h. with 94% yield for the cashew apple bagasse and 0.018 g de reducing sugar/g of substrate.h with 69% yield for coconut shell bagasse. Preliminary treatment improves residues digestibility showing good yields after hydrolysis. In this case, cellulose from the residue can be converted into glucose by cellulolytic enzymes that can be used for ethanol production