961 resultados para Engineering design
Resumo:
Effects of pedestrian movement on multiple-input multiple-output orthogonal frequency division multiplexing (MIMO-OFDM) channel capacity have been investigated using experiment and simulation. The experiment was conducted at 5.2 GHz by a MIMO-OFDM packet transmission demonstrator using four transmitters and four receivers built in-house. Geometric optics based ray tracing technique was used to simulate the experimental scenarios. Changes in the channel capacity dynamic range have been analysed for different number of pedestrian (0-3) and antennas (2-4). Measurement and simulation results show that the dynamic range increases with the number of pedestrian and the number of antennas on the transmitter and receiver array.
Resumo:
As a part of vital infrastructure and transportation networks, bridge structures must function safely at all times. However, due to heavier and faster moving vehicular loads and function adjustment, such as Busway accommodation, many bridges are now operating at an overload beyond their design capacity. Additionally, the huge renovation and replacement costs always make the infrastructure owners difficult to undertake. Structural health monitoring (SHM) is set to assess condition and foresee probable failures of designated bridge(s), so as to monitor the structural health of the bridges. The SHM systems proposed recently are incorporated with Vibration-Based Damage Detection (VBDD) techniques, Statistical Methods and Signal processing techniques and have been regarded as efficient and economical ways to solve the problem. The recent development in damage detection and condition assessment techniques based on VBDD and statistical methods are reviewed. The VBDD methods based on changes in natural frequencies, curvature/strain modes, modal strain energy (MSE) dynamic flexibility, artificial neural networks (ANN) before and after damage and other signal processing methods like Wavelet techniques and empirical mode decomposition (EMD) / Hilbert spectrum methods are discussed here.
Resumo:
This paper uses dynamic computer simulation techniques to apply a procedure using vibration-based methods for damage assessment in multiple-girder composite bridge. In addition to changes in natural frequencies, this multi-criteria procedure incorporates two methods, namely the modal flexibility and the modal strain energy method. Using the numerically simulated modal data obtained through finite element analysis software, algorithms based on modal flexibility and modal strain energy change before and after damage are obtained and used as the indices for the assessment of structural health state. The feasibility and capability of the approach is demonstrated through numerical studies of proposed structure with six damage scenarios. It is concluded that the modal strain energy method is competent for application on multiple-girder composite bridge, as evidenced through the example treated in this paper.
Resumo:
We investigate Multiple-Input and Multiple-Output Orthogonal Frequency Division Multiplexing (MIMO-OFDM) systems behavior in indoor populated environments that have line-of-site (LoS) between transmitter and receiver arrays. The in-house built MIMO-OFDM packet transmission demonstrator, equipped with four transmitters and four receivers, has been utilized to perform channel measurements at 5.2 GHz. Measurements have been performed using 0 to 3 pedestrians with different antenna arrays (2 £ 2, 3 £ 3 and 4 £ 4). The maximum average capacity for the 2x2 deterministic Fixed SNR scenario is 8.5 dB compared to the 4x4 deterministic scenario that has a maximum average capacity of 16.2 dB, thus an increment of 8 dB in average capacity has been measured when the array size increases from 2x2 to 4x4. In addition a regular variation has been observed for Random scenarios compared to the deterministic scenarios. An incremental trend in average channel capacity for both deterministic and random pedestrian movements has been observed with increasing number of pedestrian and antennas. In deterministic scenarios, the variations in average channel capacity are more noticeable than for the random scenarios due to a more prolonged and controlled body-shadowing effect. Moreover due to the frequent Los blocking and fixed transmission power a slight decrement have been observed in the spread between the maximum and minimum capacity with random fixed Tx power scenario.
Resumo:
The process of structural health monitoring (SHM) involves monitoring a structure over a period of time using appropriate sensors, extracting damage sensitive features from the measurements made by the sensors and analysing these features to determine the current state of the structure. Various techniques are available for structural health monitoring of structures and acoustic emission (AE) is one technique that is finding an increasing use. Acoustic emission waves are the stress waves generated by the mechanical deformation of materials. AE waves produced inside a structure can be recorded by means of sensors attached on the surface. Analysis of these recorded signals can locate and assess the extent of damage. This paper describes preliminary studies on the application of AE technique for health monitoring of bridge structures. Crack initiation or structural damage will result in wave propagation in solid and this can take place in various forms. Propagation of these waves is likely to be affected by the dimensions, surface properties and shape of the specimen. This, in turn, will affect source localization. Various laboratory test results will be presented on source localization, using pencil lead break tests. The results from the tests can be expected to aid in enhancement of knowledge of acoustic emission process and development of effective bridge structure diagnostics system.
Resumo:
This paper reviews the main development of approaches to modelling urban public transit users’ route choice behaviour from 1960s to the present. The approaches reviewed include the early heuristic studies on finding the least cost transit route and all-or-nothing transit assignment, the bus common line problem and corresponding network representation methods, the disaggregate discrete choice models which are based on random utility maximization assumptions, the deterministic use equilibrium and stochastic user equilibrium transit assignment models, and the recent dynamic transit assignment models using either frequency or schedule based network formulation. In addition to reviewing past outcomes, this paper also gives an outlook into the possible future directions of modelling transit users’ route choice behaviour. Based on the comparison with the development of models for motorists’ route choice and traffic assignment problems in an urban road area, this paper points out that it is rewarding for transit route choice research to draw inspiration from the intellectual outcomes out of the road area. Particularly, in light of the recent advancement of modelling motorists’ complex road route choice behaviour, this paper advocates that the modelling practice of transit users’ route choice should further explore the complexities of the problem.
Resumo:
A low-cost test bed was made from a modified heavy vehicle (HV) brake tester. By rotating a test HV’s wheel on an eccentric roller, a known vibration was imparted to the wheel under test. A control case for dampers in good condition was compared with two test cases of ineffective shock absorbers. Measurement of the forces at the bearings of the roller provided an indication of the HV wheel-forces. Where the level of serviceability of the shock absorbers varied, differences in wheel load provided a quality indicator corresponding to a change of damper characteristic. Conclusions regarding the levels of damper maintenance beyond which HV suspensions cause road damage and dynamic wheel forces at the threshold of tyre wear at which HV shock absorbers are normally replaced are presented.
Resumo:
In recent years, cities show increasing signs of environmental problems due to the negative impacts of urban activities. The degradation and depletion of natural resources, climate change and development pressure on green areas have become major concerns for cities. In response to these problems, urban planning policies have shifted to a sustainable focus and authorities have begun to develop new strategies for improving the quality of urban ecosystems. An extremely important function of an urban ecosystem is to provide healthy and sustainable environments for both natural systems and communities. Therefore, ecological planning is a functional requirement in the establishment of sustainable built environment. With ecological planning human needs are supplied while natural resources are used in the most effective and sustainable manner. And the maintenance of ecological balance is sustained. Protecting human and environmental health, having healthy ecosystems, reducing environmental pollution and providing green spaces are just a few of the many benefits of ecological planning. In this context, the paper briefly presents a short overview of the importance of the implementation of ecological planning into sustainable urban development. Furthermore, the paper defines the conceptual framework of a new method for developing sustainable urban ecosystems through ecological planning approach. In the future of the research, this model will be developed as a guideline for the assessment of the ecological sustainability in built environments.
Resumo:
The broad definition of sustainable development at the early stage of its introduction has caused confusion and hesitation among local authorities and planning professionals. The main difficulties are experience in employing loosely-defined principles of sustainable development in setting policies and goals. The question of how this theory/rhetoric-practice gap could be filled will be the theme of this study. One of the widely employed sustainability accounting approaches by governmental organisations, triple bottom line, and applicability of this approach to sustainable urban development policies will be examined. When incorporating triple bottom line considerations with the environmental impact assessment techniques, the framework of GIS-based decision support system that helps decision-makers in selecting policy option according to the economic, environmental and social impacts will be introduced. In order to embrace sustainable urban development policy considerations, the relationship between urban form, travel pattern and socio-economic attributes should be clarified. This clarification associated with other input decision support systems will picture the holistic state of the urban settings in terms of sustainability. In this study, grid-based indexing methodology will be employed to visualise the degree of compatibility of selected scenarios with the designated sustainable urban future. In addition, this tool will provide valuable knowledge about the spatial dimension of the sustainable development. It will also give fine details about the possible impacts of urban development proposals by employing disaggregated spatial data analysis (e.g. land-use, transportation, urban services, population density, pollution, etc.). The visualisation capacity of this tool will help decision makers and other stakeholders compare and select alternative of future urban developments.
Resumo:
As a result of rapid urbanisation, population growth, change in lifestyles, pollution and the impacts of climate change, water provision has become a critical challenge for planners and policy-makers. In the wake of increasingly difficult water provision and drought, the notion that freshwater is a finite and vulnerable resources is increasingly being realised. Many city administrations around the World are struggling to provide water security for their residents to maintain lifestyle and economic grouth. This paper review the glocalalternatives to current water sources, including that of desalination, water transfers, recycling, and integrated water management. A comparative study on alternative resources is undertaken and the results are discussed.
Resumo:
Dynamic load sharing can be defined as a measure of the ability of a heavy vehicle multi-axle group to equalise load across its wheels under typical travel conditions; i.e. in the dynamic sense at typical travel speeds and operating conditions of that vehicle. Various attempts have been made to quantify the ability of heavy vehicles to equalise the load across their wheels during travel. One of these was the concept of the load sharing coefficient (LSC). Other metrics such as the dynamic load coefficient (DLC) have been used to compare one heavy vehicle suspension with another for potential road damage. This paper compares these metrics and determines a relationship between DLC and LSC with sensitivity analysis of this relationship. The shortcomings of these presently-available metrics are discussed with a new metric proposed - the dynamic load equalisation (DLE) measure.
Resumo:
Typical high strength steels (HSS) have exceptional high strengths with improved weldability making the material attractive in modern steel constructions. However, due to lack of understanding, most of the current steel design standards are limited to conventional low strength steels (LSS, i.e. fy ≤ 450 MPa). This paper presents the details of full-scale experimental tests on short beams fabricated from BISPLATE80 HSS materials (nominal fy = 690 MPa). The various slenderness ratios of the plate elements in the test specimens were chosen in the range near the current yield limit (AS4100-1998, etc.). The experimental studies presented in this paper have produced a better understanding of the structural behaviour of HSS members subjected to local instabilities. Comparisons have also presented in the paper regarding to the design predictions from the current steel standards (AS4100-1998). This study has enabled to provide a series of proposals for proper assessment of plate slenderness limits for structural members made of representative HSS materials. This research work also enables the inclusion of further versions in the steel design specifications for typical HSS materials to be used in buildings and bridges. This paper also presents a distribution model of residual stresses in the longitudinal direction for typical HSS I-sections.