999 resultados para Electron accepting unit
Resumo:
The objectives of this research were the collection and evaluation of the data pertaining to the importance of concrete mixing time on air content and distribution, consolidation and workability for pavement construction. American Society for Testing and Materials (ASTM) standard C 94 was used to determine the significance of the mixing time on the consistency of the mix being delivered and placed on grade. Measurements of unit weight, slump, air content, retained coarse aggregate and compressive strength were used to compare the consistency of the mix in the hauling unit at the point of mixing and at the point placement. An analysis of variance was performed on the data collected from the field tests. Results were used to establish the relationship between selected mixing time and the portland cement concrete properties tested. The results were also used to define the effect of testing location (center and side of truck, and on the grade) on the concrete properties. Compressive strength test concepts were used to analyze the hardened concrete pavement strength. Cores were obtained at various locations on each project on or between vibrator locations to evaluate the variance in each sample, between locations, and mixing times. A low-vacuum scanning electron microscope (SEM) was used to study air void parameters in the concrete cores. Combining the data from these analysis thickness measurements and ride in Iowa will provide a foundation for the formulation of a performance based matrix. Analysis of the air voids in the hardened concrete provides a description of the dispersion of the cemtitious materials (specifically flyash) and air void characteristics in the pavement. Air void characteristics measured included size, shape and distribution.
Resumo:
BACKGROUND: Tracheal intubation may be more difficult in morbidly obese (MO) patients than in the non-obese. The aim of this study was to evaluate clinically if the use of the Video Intubation Unit (VIU), a video-optical intubation stylet, could improve the laryngoscopic view compared with the standard Macintosh laryngoscope in this specific population. METHODS: We studied 40 MO patients (body mass index >35 kg/m(2)) scheduled for bariatric surgery. Each patient had a conventional laryngoscopy and a VIU inspection. The laryngoscopic grades (LG) using the Cormack and Lehane scoring system were noted and compared. Thereafter, the patients were randomised to be intubated with one of the two techniques. In one group, the patients were intubated with the help of the VIU and in the control group, tracheal intubation was performed conventionally. The duration of intubation, as well as the minimal SpO(2) achieved during the procedure, were measured. RESULTS: Patient characteristics were similar in both groups. Seventeen patients had a direct LG of 2 or 3 (no patient had a grade of 4). Out of these 17 patients, the LG systematically improved with the VIU and always attained grade 1 (P<0.0001). The intubation time was shorter within the VIU group, but did not attain significance. There was no difference in the SpO(2) post-intubation. CONCLUSION: In MO patients, the use of the VIU significantly improves the visualisation of the larynx, thereby improving the intubation conditions.
Resumo:
This research, initiated in October 1992, was located at the intersection of Blairs Ferry Road and Lindale Drive in the City of Marion. The wall is located on the southeast corner of the intersection. Reinforced retaining wall construction started with a five inch base of roadstone with one inch of sand for leveling purposes. One and one-half to two feet of one inch clean stone was placed behind the blocks. A four inch perforated plastic pipe was placed approximately nine inches from the bottom of the one inch clean stone. The Tenswal, tensar geogrid was placed at every third layer. Openings in the Tenswal are hooked over plastic dowels in the blocks. The tenswal reaches from the face of the wall back 5' to 8'. The cost for constructing this wall was $124,400. The wall has performed well for the past five years. The wall improves the aesthetics of a high traffic volume intersection of an urban area. Many positive comments have been received by the city regarding its appearance. The City of Marion has been pleased with the wall and has used this type of wall on subsequent projects.
Resumo:
There has been a long standing desire to produce thick (up to 500 nm) cryo-sections of fully hydrated cells and tissue for high-resolution analysis in their natural state by cryo-transmission electron microscopy. Here, we present a method that can successfully produce sections (lamellas in FIB-SEM terminology) of fully hydrated, unstained cells from high-pressure frozen samples by focused ion beam (FIB) milling. The samples are therefore placed in thin copper tubes and vitrified by high-pressure freezing. For transfer, handling and subsequent milling, the tubes are placed in a novel connective device (ferrule) that protects the sample from devitrification and contamination and passes through all operation steps. A piezo driven sample positioning stage (cryo-nano-bench, CNB) with three degrees of freedom was additionally developed to enable accurate milling of frozen-hydrated lamellas. With the CNB, high-pressure frozen samples can be milled to produce either thin lamellas (<100 nm), for direct imaging by high-resolution cryo-TEM or thicker lamellas (300-500 nm) for cryo-electron tomography. The sample remains vitreous throughout the process by using the presented tools and methods. The results are an important step towards investigating larger cells and even tissue in there natural state which in the end will enable us to gain better insights into cellular processes.
Resumo:
Patients admitted to the neurocritical care unit (NCCU) often have serious conditions that can be associated with high morbidity and mortality. Pharmacologic agents or neuroprotectants have disappointed in the clinical environment. Current NCCU management therefore is directed toward identification, prevention, and treatment of secondary cerebral insults that evolve over time and are known to aggravate outcome. This strategy is based on a variety of monitoring techniques including use of intraparenchymal monitors. This article reviews parenchymal brain oxygen monitors, including the available technologies, practical aspects of use, the physiologic rationale behind their use, and patient management based on brain oxygen.
Resumo:
BACKGROUND: Abdominal infections are frequent causes of sepsis and septic shock in the intensive care unit (ICU) and are associated with adverse outcomes. We analyzed the characteristics, treatments and outcome of ICU patients with abdominal infections using data extracted from a one-day point prevalence study, the Extended Prevalence of Infection in the ICU (EPIC) II. METHODS: EPIC II included 13,796 adult patients from 1,265 ICUs in 75 countries. Infection was defined using the International Sepsis Forum criteria. Microbiological analyses were performed locally. Participating ICUs provided patient follow-up until hospital discharge or for 60 days. RESULTS: Of the 7,087 infected patients, 1,392 (19.6%) had an abdominal infection on the study day (60% male, mean age 62 ± 16 years, SAPS II score 39 ± 16, SOFA score 7.6 ± 4.6). Microbiological cultures were positive in 931 (67%) patients, most commonly Gram-negative bacteria (48.0%). Antibiotics were administered to 1366 (98.1%) patients. Patients who had been in the ICU for ≤ 2 days prior to the study day had more Escherichia coli, methicillin-sensitive Staphylococcus aureus and anaerobic isolates, and fewer enterococci than patients who had been in the ICU longer. ICU and hospital mortality rates were 29.4% and 36.3%, respectively. ICU mortality was higher in patients with abdominal infections than in those with other infections (29.4% vs. 24.4%, p < 0.001). In multivariable analysis, hematological malignancy, mechanical ventilation, cirrhosis, need for renal replacement therapy and SAPS II score were independently associated with increased mortality. CONCLUSIONS: The characteristics, microbiology and antibiotic treatment of abdominal infections in critically ill patients are diverse. Mortality in patients with isolated abdominal infections was higher than in those who had other infections.
Resumo:
One of the main problems in transmission electron microscopy in thebiological field is the tri-dimensionality. This article explains the technicalprocedures and requirements to prepare biological specimens preserving themclosest to their native state to perform 3D reconstruction of the macromolecularcomplexes and cellular structures in their natural environment.
Resumo:
Transmission electron microscopy is a proven technique in the field of cell biology and a very useful tool in biomedical research. Innovation and improvements in equipment together with the introduction of new technology have allowed us to improve our knowledge of biological tissues, to visualizestructures better and both to identify and to locate molecules. Of all the types ofmicroscopy exploited to date, electron microscopy is the one with the mostadvantageous resolution limit and therefore it is a very efficient technique fordeciphering the cell architecture and relating it to function. This chapter aims toprovide an overview of the most important techniques that we can apply to abiological sample, tissue or cells, to observe it with an electron microscope, fromthe most conventional to the latest generation. Processes and concepts aredefined, and the advantages and disadvantages of each technique are assessedalong with the image and information that we can obtain by using each one ofthem.
Resumo:
In the present work we review the way in which the electron-matter interaction allows us to perform electron energy loss spectroscopy (EELS), as well as the latest developments in the technique and some of the most relevant results of EELS as a characterization tool in nanoscience and nanotechnology.
Resumo:
Precession electron diffraction (PED) is a hollow cone non-stationary illumination technique for electron diffraction pattern collection under quasikinematicalconditions (as in X-ray Diffraction), which enables “ab-initio” solving of crystalline structures of nanocrystals. The PED technique is recently used in TEMinstruments of voltages 100 to 300 kV to turn them into true electron iffractometers, thus enabling electron crystallography. The PED technique, when combined with fast electron diffraction acquisition and pattern matching software techniques, may also be used for the high magnification ultra-fast mapping of variable crystal orientations and phases, similarly to what is achieved with the Electron Backscatter Diffraction (EBSD) technique in Scanning ElectronMicroscopes (SEM) at lower magnifications and longer acquisition times.
Resumo:
This article summarizes the basic principles of electron probe microanalysis, with examples of applications in materials science and geology that illustrate the capabilities of the technique.
Resumo:
Nowadays Scanning Electron Microscopy (SEM) is a basic and fundamental tool in the study of geologic samples. The collision of a highlyaccelerated electron beam with the atoms of a solid sample results in theproduction of several radiation types than can be detected and analysed byspecific detectors, providing information of the chemistry and crystallography ofthe studied material. From this point of view, the chamber of a SEM can beconsidered as a laboratory where different experiments can be carried out. Theapplication of SEM to geology, especially in the fields of mineralogy andpetrology has been summarised by Reed (1996).The aim of this paper is to showsome recent applications in the characterization of geologic materials.
Resumo:
This article summarizes the basic principles of scanning electron microscopy and the capabilities of the technique with different examples ofapplications in biomedical and biological research.
Resumo:
Audit report on the Iowa Department of Human Services – Targeted Case Management Unit for the year ended June 30, 2013