776 resultados para Electric capacity.
Resumo:
Consider a general equilibrium framework where the marginal cost of extraction from several deposits of an exhaustible resource is constant in terms of an inexhaustible perfect substitute and differs between deposits. the instantaneous rate of production form the inexhaustible resource is subject to a capacity constraint.
Resumo:
Within the framework of the “capability approach” to human rights, this paper argues that adults who facilitate participatory planning and design with children and youth have an ethical obligation to foster young people’s capacities for active democratic citizenship. Practitioners often worry, justifiably, that if young people fail to see their ideas realized, they may become disillusioned and alienated from political life. Based on the experience of the Growing Up in Cities program of UNESCO, four rules of good practice are distilled which can help promote young people’s belief in the value of collective action, regardless of the challenges that the full implementation of their ideas may face.
Resumo:
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal
Resumo:
Chronic liver failure leads to hyperammonemia and consequently increased brain ammonia concentrations, resulting in hepatic encephalopathy. When the liver fails to regulate ammonia concentrations, the brain, devoid of a urea cycle, relies solely on the amidation of glutamate to glutamine through glutamine synthetase, to efficiently clear ammonia. Surprisingly, under hyperammonemic conditions, the brain is not capable of increasing its capacity to remove ammonia, which even decreases in some regions of the brain. This non-induction of glutamine synthetase in astrocytes could result from possible limiting substrates or cofactors for the enzyme, or an indirect effect of ammonia on glutamine synthetase expression. In addition, there is evidence that nitration of the enzyme resulting from exposure to nitric oxide could also be implicated. The present review summarizes these possible factors involved in limiting the increase in capacity of glutamine synthetase in brain, in chronic liver failure.
Resumo:
BACKGROUND/AIMS: It has been proposed that, in acute liver failure, skeletal muscle adapts to become the principle organ responsible for removal of blood-borne ammonia by increasing glutamine synthesis, a reaction that is catalyzed by the cytosolic ATP-dependent enzyme glutamine synthetase. To address this issue, glutamine synthetase expression and activities were measured in skeletal muscle of rats with acute liver failure resulting from hepatic devascularization. METHODS: Glutamine synthetase protein and gene expression were investigated using immunoblotting and semi-quantitative RT-PCR analysis. Glutamine synthetase activity and glutamine de novo synthesis were measured using, respectively, a standard enzymatic assay and [13C]-nuclear magnetic resonance spectroscopy. RESULTS: Glutamine synthetase protein (but not gene) expression and enzyme activities were significantly up-regulated leading to increased de novo synthesis of glutamine and increased skeletal muscle capacity for ammonia removal in acute liver failure. In contrast to skeletal muscle, expression and activities of glutamine synthetase in the brain were significantly decreased. CONCLUSIONS: These findings demonstrate that skeletal muscle adapts, through a rapid induction of glutamine synthetase, to increase its capacity for removal of blood-borne ammonia in acute liver failure. Maintenance of muscle mass together with the development of agents with the capacity to stimulate muscle glutamine synthetase could provide effective ammonia-lowering strategies in this disorder.
Resumo:
Une variété d’opérations cognitives dépend de la capacité de retenir de l’information auditive pour une courte période de temps. Notamment l’information auditive prend son sens avec le temps; la rétention d’un son disparu permet donc de mieux comprendre sa signification dans le contexte auditif et mène ultimement à une interaction réussite avec l’environnement. L’objectif de cette thèse était d’étudier l’activité cérébrale reliée à la rétention des sons et, ce faisant, parvenir à une meilleure compréhension des mécanismes de bas niveau de la mémoire à court-terme auditive. Trois études empiriques se sont penchées sur différents aspects de la rétention des sons. Le premier article avait pour but d’étudier les corrélats électrophysiologiques de la rétention des sons variant en timbre en utilisant la technique des potentiels reliés aux événements. Une composante fronto-centrale variant avec la charge mnésique a été ainsi révélée. Dans le deuxième article, le patron électro-oscillatoire de la rétention a été exploré. Cette étude a dévoilé une augmentation de l’amplitude variant avec la charge mnésique dans la bande alpha pendant la rétention des sons ainsi qu’une dissociation entre l’activité oscillatoire observée pendant la rétention et celle observée pendant la présentation des sons test. En démontrant des différentes modulations des amplitudes dans la bande alpha et la bande beta, cette étude a pu révéler des processus distincts mais interdépendants de la mémoire à court-terme auditive. Le troisième article a davantage visé à mieux connaître les structures cérébrales soutenant la rétention de sons. L’activité cérébrale a été mesurée avec la magnétoencéphalographie, et des localisations des sources ont été effectuées à partir de ces données. Les résultats ont dévoilé l’implication d’un réseau cérébral contenant des structures temporales, frontales, et pariétales qui était plus important dans l’hémisphère droit que dans l’hémisphère gauche. Les résultats des études empiriques ont permis de souligner l’aspect sensoriel de la mémoire à court-terme auditive et de montrer des similarités dans la rétention de différentes caractéristiques tonales. Dans leur ensemble, les études ont contribué à l’identification des processus neuronaux reliés à la rétention des sons en étudiant l’activité électromagnétique et l’implication des structures cérébrales correspondantes sur une échelle temporelle fine.
Resumo:
In this paper we show that if the electrons in a quantum Hall sample are subjected to a constant electric field in the plane of the material, comparable in magnitude to the background magnetic field on the system of electrons, a multiplicity of edge states localized at different regions of space is produced in the sample. The actions governing the dynamics of these edge states are obtained starting from the well-known Schrödinger field theory for a system of nonrelativistic electrons, where on top of the constant background electric and magnetic fields, the electrons are further subject to slowly varying weak electromagnetic fields. In the regions between the edges, dubbed as the "bulk," the fermions can be integrated out entirely and the dynamics expressed in terms of a local effective action involving the slowly varying electromagnetic potentials. It is further shown how the bulk action is gauge noninvariant in a particular way, and how the edge states conspire to restore the U(1) electromagnetic gauge invariance of the system. In the edge action we obtain a heretofore unnoticed gauge-invariant term that depends on the particular edge. We argue that this term may be detected experimentally as different edges respond differently to a monochromatic probe due to this term
Resumo:
In this paper we discuss both theoretical and experimental results on the time dependence of the heat capacity of oriented Mn12 magnetic clusters when a magnetic field is applied along their easy axis. Our calculations are based on the existence of two contributions. The first one is associated with the thermal populations of the 21 different Sz levels in the two potential wells of the magnetic uniaxial anisotropy and the second one is related to the transitions between the Sz levels. We compare our theoretical predictions with experimental data on the heat capacity for different resolution times at different fields and temperatures.
Resumo:
Self-sustained time-dependent current oscillations under dc voltage bias have been observed in recent experiments on n-doped semiconductor superlattices with sequential resonant tunneling. The current oscillations are caused by the motion and recycling of the domain wall separating low- and high-electric-field regions of the superlattice, as the analysis of a discrete drift model shows and experimental evidence supports. Numerical simulation shows that different nonlinear dynamical regimes of the domain wall appear when an external microwave signal is superimposed on the dc bias and its driving frequency and driving amplitude vary. On the frequency-amplitude parameter plane, there are regions of entrainment and quasiperiodicity forming Arnold tongues. Chaos is demonstrated to appear at the boundaries of the tongues and in the regions where they overlap. Coexistence of up to four electric-field domains randomly nucleated in space is detected under ac+dc driving.
Resumo:
Paper industry is one of the oldest and largest industries in Kerala. Despite the developments in the industry in terms of growth in output , value added and employment generation, many of the units face grave problems. Irrespective of the size of the plant, the problems of the industry are general in nature. The problems are galore in the supply, not the demand side. Amomg the problems, the important ones are: raw material scarcity, energy deficiency and obsolete technology. Further, the industry is subject to many controls by the Government — price control, product control and raw materials control — which result in the dwindling of profits and investments. Equally important are the reservations against the industry for polluting the environment byeffluent disposal on the one hand and affecting ecological balance by depleting the existing forest on the other. Apart from the large, medium and small pulp and paper mills, there are about 30 hand made paper units in Kerala which can be categorised as village and cottage industry. Almost all of these units began at the initiative and support of Khadi and Village Industries Commission. The primary purpose of these units is employment generation, and not profit making. Currently many of these units are in the red and many others are on the verge of closure. Therefore, a separate analysis of the growth performance, and problems and prospects of the hand made paper industry has also been attempted. It is analysed separately because of the very small size of the hand made paper units
Resumo:
Lead free magneto electrics with a strong sub resonant (broad frequency range) magneto electric coupling coefficient (MECC) is the goal of the day which can revolutionise the microelectronics and microelectromechanical systems (MEMS) industry. We report giant resonant MECC in lead free nanograined Barium Titanate–CoFe (Alloy)-Barium Titanate [BTO-CoFe-BTO] sandwiched thin films. The resonant MECC values obtained here are the highest values recorded in thin films/ multilayers. Sub-resonant MECC values are quite comparable to the highest MECC reported in 2-2 layered structures. MECC got enhanced by two orders at a low frequency resonance. The results show the potential of these thin films for transducer, magnetic field assisted energy harvesters, switching devices, and storage applications. Some possible device integration techniques are also discussed
Resumo:
Raman spectra of the KTP single crystal are recorded in electric fields (dc and ac) applied along the polar axis c. Spectra with the laser beam focused near the cathode end, anode end and the centre of the crystal are recorded. The cathode end of the crystal develops a spot ‘grey track’ where the laser beam is focused after a lapse of 5 h from the application of a dc electric field of 38 V/cm. The spectra recorded at the cathode end after the application of field show variations in intensity of bands. A new band appears at 177 cm21. Changes in band intensities are explained on the basis of changes in polarizability of the crystal due to the movement of K1 ions along the polar axis. K1 ions accumulate at the cathode end, where the ‘Grey track’ formation occurs. The intensity enhancement observed for almost all bands in the ac field is attributed to the improvement of crystalline quality.