998 resultados para ELECTRON-SCATTERING
Resumo:
Coating and filler pigments have strong influence to the properties of the paper. Filler content can be even over 30 % and pigment content in coating is about 85-95 weight percent. The physical and chemical properties of the pigments are different and the knowledge of these properties is important for optimising of optical and printing properties of the paper. The size and shape of pigment particles can be measured by different analysers which can be based on sedimentation, laser diffraction, changes in electric field etc. In this master's thesis was researched particle properties especially by scanning electron microscope (SEM) and image analysis programs. Research included nine pigments with different particle size and shape. Pigments were analysed by two image analysis programs (INCA Feature and Poikki), Coulter LS230 (laser diffraction) and SediGraph 5100 (sedimentation). The results were compared to perceive the effect of particle shape to the performance of the analysers. Only image analysis programs gave parameters of the particle shape. One part of research was also the sample preparation for SEM. Individual particles should be separated and distinct in ideal sample. Analysing methods gave different results but results from image analysis programs corresponded even to sedimentation or to laser diffraction depending on the particle shape. Detailed analysis of the particle shape required high magnification in SEM, but measured parameters described very well the shape of the particles. Large particles (ecd~1 µm) could be used also in 3D-modelling which enabled the measurement of the thickness of the particles. Scanning electron microscope and image analysis programs were effective and multifunctional tools for particle analyses. Development and experience will devise the usability of analysing method in routine use.
Resumo:
An analytical approximation, depending on five parameters, for the atomic screening function is proposed. The corresponding electrostatic potential takes a simple analytical form (superposition of three Yukawa potentials) well suited to most practical applications. Parameters in the screening function, determined by an analytical fitting procedure to Dirac-Hartree-Fock-Slater (DHFS) self-consistent data, are given for Z=1¿92. The reliability of this analytical approach is demonstrated by showing that (a) Born cross sections for elastic scattering of fast charged particles by the present analytical field and by the DHFS field practically coincide and (b) one-electron binding energies computed from the independent-particle model with our analytical field (corrected for exchange and electrostatic self-interaction) agree closely with the DHFS energy eigenvalues.
Resumo:
High-dose carbon-ion-implanted Si samples have been analyzed by infrared spectroscopy, Raman scattering, and x-ray photoelectron spectroscopy (XPS) correlated with transmission electron microscopy. Samples were implanted at room temperature and 500°C with doses between 1017 and 1018 C+/cm2. Some of the samples were implanted at room temperature with the surface covered by a capping oxide layer. Implanting at room temperature leads to the formation of a surface carbon-rich amorphous layer, in addition to the buried implanted layer. The dependence of this layer on the capping oxide suggests this layer to be determined by carbon migration toward the surface, rather than surface contamination. Implanting at 500°C, no carbon-rich surface layer is observed and the SiC buried layer is formed by crystalline ßSiC precipitates aligned with the Si matrix. The concentration of SiC in this region as measured by XPS is higher than for the room-temperature implantation.
Resumo:
A physical model for the simulation of x-ray emission spectra from samples irradiated with kilovolt electron beams is proposed. Inner shell ionization by electron impact is described by means of total cross sections evaluated from an optical-data model. A double differential cross section is proposed for bremsstrahlung emission, which reproduces the radiative stopping powers derived from the partial wave calculations of Kissel, Quarles and Pratt [At. Data Nucl. Data Tables 28, 381 (1983)]. These ionization and radiative cross sections have been introduced into a general-purpose Monte Carlo code, which performs simulation of coupled electron and photon transport for arbitrary materials. To improve the efficiency of the simulation, interaction forcing, a variance reduction technique, has been applied for both ionizing collisions and radiative events. The reliability of simulated x-ray spectra is analyzed by comparing simulation results with electron probe measurements.
Resumo:
We present a general algorithm for the simulation of x-ray spectra emitted from targets of arbitrary composition bombarded with kilovolt electron beams. Electron and photon transport is simulated by means of the general-purpose Monte Carlo code PENELOPE, using the standard, detailed simulation scheme. Bremsstrahlung emission is described by using a recently proposed algorithm, in which the energy of emitted photons is sampled from numerical cross-section tables, while the angular distribution of the photons is represented by an analytical expression with parameters determined by fitting benchmark shape functions obtained from partial-wave calculations. Ionization of K and L shells by electron impact is accounted for by means of ionization cross sections calculated from the distorted-wave Born approximation. The relaxation of the excited atoms following the ionization of an inner shell, which proceeds through emission of characteristic x rays and Auger electrons, is simulated until all vacancies have migrated to M and outer shells. For comparison, measurements of x-ray emission spectra generated by 20 keV electrons impinging normally on multiple bulk targets of pure elements, which span the periodic system, have been performed using an electron microprobe. Simulation results are shown to be in close agreement with these measurements.
Resumo:
In this thesis a total of 86 compounds containing the hetero atoms oxygen and nitrogen were studied under electron ionization mass spectrometry (EIMS). These compounds are biologically active and were synthesized by various research groups. The main attention of this study was paid on the fragmentations related to different tautomeric forms of 2- phenacylpyridines, 2-phenacylquinolines, 8-aryl-3,4-dioxo-2H,8H-6,7-dihydroimidazo- [2,1-c][1,2,4]triazines and aryl- and benzyl-substituted 2,3-dihydroimidazo[1,2-a]pyrimidine-5,7-(1H,6H)-diones. Also regio/stereospecific effects on fragmentations of pyrrolo- and isoindoloquinazolinones and naphthoxazine, naphthpyrrolo-oxazinone and naphthoxazino-benzoxazine derivatives were screened. Results were compared with NMR data, when available. The first part of thesis consists of theory and literature review of different types of tautomerism and fragmentation mechanisms in EIMS. The effects of tautomerism in biological systems are also briefly reviewed. In the second part of the thesis the own results of the author, based on six publications,are discussed. For 2-phenacylpyridines and 2-phenacylquinolines the correlation of different Hammett substituent constants to the relative abundances (RA) or total ion currents (% TIC) of selected ions were investigated. Although it was not possible to assign most of the ions formed unambiguously to the different tautomers, the linear fits of their RAs and % TICs can be related to changing contributions of different tautomeric forms. For dioxoimidazotriazines and imidazopyrimidinediones the effects of substituents were rather weak. The fragmentations were also found useful for obtaining structural information. Some stereoisomeric pairs of pyrrolo- and isoindoloquinazolines and regiomeric pairs of naphtoxazine derivatives showed clear differences in thir mass spectra. Some mechanisms are suggested for their fragmentations.
Resumo:
This paper proposes a calibration method which can be utilized for the analysis of SEM images. The field of application of the developed method is a calculation of surface potential distribution of biased silicon edgeless detector. The suggested processing of the data collected by SEM consists of several stages and takes into account different aspects affecting the SEM image. The calibration method doesn’t pretend to be precise but at the same time it gives the basics of potential distribution when the different biasing voltages applied to the detector.
Resumo:
Coherent anti-Stokes Raman scattering (CARS) microscopy is rapidly developing into a unique microscopic tool in biophysics, biology and the material sciences. The nonlinear nature of CARS spectroscopy complicates the analysis of the received spectra. There were developed mathematical methods for signal processing and for calculations spectra. Fourier self-deconvolution is a special high pass FFT filter which synthetically narrows the effective trace bandwidth features. As Fourier self-deconvolution can effectively reduce the noise, which may be at a higher spatial frequency than the peaks, without losing peak resolution. The idea of the work is to experiment the possibility of using wavelet decomposition in spectroscopic for background and noise removal, and Fourier transformation for linenarrowing.
Resumo:
Because of technical principles, samples to be observed with electron microscopy need to be fixed in a chemical process and exposed to vacuum conditions that can produce some changes in the morphology of the specimen. The aim of this work was to obtain high-resolution images of the fresh articular cartilage surface with an environmental scanning electron microscope (ESEM), which is an instrument that permits examination of biological specimens without fixation methods in a 10 Torr chamber pressure, thus minimizing the risk of creating artifacts in the structure. Samples from weight-bearing areas of femoral condyles of New Zealand white rabbits were collected and photographed using an ESEM. Images were analyzed using a categorization based in the Jurvelin classification system modified by Hong and Henderson. Appearance of the observed elevations and depressions as described in the classification were observed, but no fractures or splits of cartilage surface, thought to be artifacts, were detected. The ESEM is a useful tool to obtain images of fresh articular cartilage surface appearance without either employing fixation methods or exposing the specimen to extreme vacuum conditions, reducing the risk of introducing artifacts within the specimen. For all these reasons it could become a useful tool for quality control of the preservation process of osteochondral allografting in a bank of musculoskeletal tissues.
Resumo:
The [Ru3O(Ac)6(py)2(CH3OH)]+ cluster provides an effective electrocatalytic species for the oxidation of methanol under mild conditions. This complex exhibits characteristic electrochemical waves at -1.02, 0.15 and 1.18 V, associated with the Ru3III,II,II/Ru3III,III,II/Ru 3III,III,III /Ru3IV,III,III successive redox couples, respectively. Above 1.7 V, formation of two RuIV centers enhances the 2-electron oxidation of the methanol ligand yielding formaldehyde, in agreement with the theoretical evolution of the HOMO levels as a function of the oxidation states. This work illustrates an important strategy to improve the efficiency of the oxidation catalysis, by using a multicentered redox catalyst and accessing its multiple higher oxidation states.
Resumo:
Electron paramagnetic resonance (EPR) spectroscopy was used to study the main structural accommodations of spin labels in bilayers of saturated phosphatidylcholines with acyl chain lengths ranging from 16 to 22 carbon atoms. EPR spectra allowed the identification of two distinct spectral components in thermodynamic equilibrium at temperatures below and above the main phase transition. An accurate analysis of EPR spectra, using two fitting programs, enabled determination of the thermodynamic profile for these major probe accommodations. Focusing the analysis on two-component EPR spectra of a spin-labeled lipid, the influence of 40 mol % cholesterol in DPPC was studied.
Resumo:
Rich and Suter diagrams are a very useful tool to explain the electron configurations of all transition elements, and in particular, the s¹ and s0 configurations of the elements Cr, Cu, Nb, Mo, Ru, Rh, Pd, Ag, and Pt. The application of these diagrams to the inner transition elements also explains the electron configurations of lanthanoids and actinoids, except for Ce, Pa, U, Np, and Cm, whose electron configurations are indeed very special because they are a mixture of several configurations.
Resumo:
Soft nanoparticles of size 200-400 nm were obtained from soybean protein isolate (SPI). The particles were formed and suspended in water by the coacervation of aqueous suspensions of SPI in hostile buffered aqueous solutions in the presence of surfactants. We investigate the effect of storage, ionic strength, and concentrations of SPI and surfactant on nanoparticle size and zeta potential. Transmission electron microscopy images and scattering techniques (SLS/ DLS) revealed that the particles are spherical, with hydrophilic chains at the surface.