999 resultados para ELECTRODE POSITION
Resumo:
An electrode modified with a polybasic lanthanide heteropoly tungstate/molybdate complex K10H3[Nd(SiMo7W4O39)(2)] entrapped into polypyrrole (PPy) film, denoted as Nd(SiMo7W4)(2)-PPy, exhibits three couples of two-electron redox waves in pH 1-5 buffer solutions. The redox waves are surface-controlled at lower scan rates and diffusion-controlled at higher scan rates. The effects of pH on the electrochemical behavior of Nd(SiMo7W4)(2) in PPy film were investigated in detail and compared with that of Nd(SiMo7W4)(2) in aqueous solution. The various charge states of PPy during its redox process have peculiar effects on the relationship between pH and formal potentials of Nd(SiMo7W4)(2)-PPy at different acidities. The Nd(SiMo7W4)(2)-PPy cme can remarkably catalyze the electrochemical reduction of bromate with good stability. (C) 1997 Elsevier Science Ltd.
Resumo:
Detection of DNA is a very important task for molecular biology and biomedical field. We have investigated electrochemical behavior of double-stranded DNA and single-stranded DNA adsorbed on conducting polymer modified electrode in presence of cobalt complex. The possibility of using such electrode as gene detector is discussed.
Resumo:
In situ electrochemical scanning tunneling microscopy (ECSTM) and an electrochemical quartz crystal microbalance (EQCM) have been employed to follow the adsorption/desorption processes of phenanthraquinone (PQ sat. in 0.1 mol l(-1) HClO4, solution) accompanied with an electrochemical redox reaction on the Au electrode. The result shows that: (1) the reduced form PQH(2) adsorbed at the Au electrode and the desorption occurred when PQH(2) was oxidized to PQ; (2) the adsorption process initiates at steps or kinks which provide high active sites on the electrode surface for adsorption, and as the potential shifts to negative, a multilayer of PQH(2) may be formed at the Au electrode; (3) the reduced PQH(2) adsorbed preferentially in the area where the tip had been scanned continually; this result suggests that the tip induction may accelerate the adsorption of PQH(2) on the Au(111) electrode. Two kinds of possible reason have been discussed; (4) high resolution STM images show the strong substrate lattice information and the weak monolayer adsorbate lattice information simultaneously. The PQH(2) molecules pack into a not perfectly ordered condensed physisorbed layer at potentials of 0.1 and 0.2 V with an average lattice constant a = 11.5 +/- 0.4 Angstrom, b = 11.5 +/- 0.4 Angstrom, and gamma = 120 +/- 2 degrees; the molecular lattice is rotated with respect to the substrate lattice by about 23 +/- 2 degrees. (C) 1997 Elsevier Science S.A.
Resumo:
The irreversible capacity loss of the carbon electrode in lithium-ion batteries at the first cycle is caused mostly by surface film growth. We inspected an unknown irreversible capacity loss (UICL) of the natural graphite electrodes. The charge/discharge behavior of graphite and meso-phase carbon microbeads heat-treated at 2800 degrees C (MCMB28) as the materials of the carbon anode in the lithium-ion battery were compared. It was found that the capacity loss of the natural graphite electrode in the first cycle is caused not only by surface film growth, but also by irreversible lithium-ion intercalation on the new formed surface at the potential range of lithium intercalation, while the capacity loss of the MCMB28 electrode is mainly originated from surface film growth. The reason for the difference of their irreversible capacity losses of these two kinds of carbon material was explained in relation to their structural characteristics. (C) 1997 Published by Elsevier Science S.A.
Resumo:
The responses of a cryohydrogel tyrosinase enzyme electrode to four substrates in three pure water immiscible organic solvents were investigated. Kinetic parameters, the maximum kinetic current, I-max, the apparent Michaelis-Menten constant, K-m(app), and I-max/K-m(app), were calculated. The I-max/K-m(app) value was taken as an indicator of the catalytic efficiency of the sensor. The effect of the substrate hydrophobicity on I-max/K-m(app) and response time of the sensor were discussed. The effects of both hydrophobicity (log P) and dielectric constant (epsilon) of the organic solvent on the catalytic efficiency of the enzyme in the organic phase were studied. (C) 1997 Elsevier Science S.A.
Resumo:
A thin-layer microdisk array electrode (TLMDAE) was designed for in situ reflectance FTIR spectroelectrochemical studies. A theoretical estimation, cyclic voltammetry, chronoamperometry and in situ IR measurements demonstrate that this novel design of array electrode results in advantages such as reduced ohmic potential drop, small cell constant and facility for diffusional exchange between thin layer and bulk solution. It has been suggested that the enhanced edge diffusion on the TLMDAE leads to a reduced accumulation of species in the thin layer. (C) 1997 Elsevier Science S.A.
Resumo:
A poly(4-vinyl)pyridine (PVP)/Pd film electrode was constructed for the electrocatalytic detection of hydrazine. The preparation of the PVP/GC electrode was performed by electropolymerization of the monomer 4-vinylpyridine onto the surface of a glassy carbon electrode. Subsequently, palladium is electrodeposited onto the polymer modified electrode surface. The ion-exchange function of PVP polymer is helpful to this process in view of the tetrachlorapalladate anion. Compared with the Pd/GC electrode, the modified electrode displays a better mechanical stability in a flowing stream. The PVP/Pd film electrode exhibits higher sensitivity when detecting hydrazine with a detection limit of 0.026 ng (S/N=3).
Resumo:
Electroactive self-assembled monolayers (SAMs) with well-defined electrochemical responses were prepared by spontaneous assembly of the inclusion complexes (CD/C8VComegaSH) of viologen-attached alkanethiols (C8VComegaSH) and alpha- and beta-cyclodextrin (CD). They were characterized by X-ray photoelectron spectroscopy and cyclic voltammetry. The results demonstrate that the chemisorption process of CD/C8VComegaSH on gold substrate occurs through S-Au bonds, and that the redox sites in SAMs of CD/C8VComegaSH are in a much more uniform environment than those in SAMs of C8VComegaSH.
Resumo:
The interfacial characteristics of poly-L-lysine (PL) attached on self-assembled monolayers (SAMs) of 3-mercaptopropionic acid (MPA) were studied by an electrochemical method. The results indicated that PL\MPA layer inhibited partly the diffusion process of redox species in solution, and the electrode surface behaved like a microelectrode array. Its permeation effect was also strongly affected by Mg2+. The more Mg2+ ions were added into the electrolyte solution, the greater the difficulty with which the electron transfer of potassium ferricyanide took place. The three different conformations of PL on the electrode surface had different influences on the electron transfer processes of ferricyanide. PL in random coil state hindered most strongly the electron transfer behavior of ferricyanide,while the alpha-helical PL had nearly no effect and the effect of the beta-sheet state PL was intermediate of these. (C) 1997 Elsevier Science S.A.
Resumo:
Cobalt(II)-cyanoferrate polymeric film has been electrochemically deposited on a glassy carbon electrode and investigated by cyclic voltammetry and in-situ reflection FTIR spectroscopy. A reorientation of the terminal C=N groups upon redox reactions was proposed. The stretching vibration mode of the terminal C=N groups associated with Fe(III) was observed at 2122 cm(-1), however, the stretching vibration mode for terminal groups associated with Fe(II) did not appear. This process could result in a switch between lattice-closed and lattice-opened surface structure. (C) 1997 Elsevier Science B.V.
Resumo:
Chromatography-amperometric detection of nitrite with a polypyrrole modified glassy carbon electrode doped with tungstodiphosphate anion (Dawson-type P2W18O626-/PPy/GC electrode) based on its electrocatalytic reduction of nitrite is described. The cyclic and hydrodynamic voltammetry of nitrite at the P2W18O626-/PPy/GC electrode was studied. The factors affecting the detection of nitrite and the analytical performance of the modified electrode in flowing stream were investigated. The results show that the modified electrode has a good sensitivity (the limit of detection is 1 mu mol dm(-3)) and a satisfactory reproducibility (RSD = 3.78%, N = 21). The modified electrode was used in the chromatographic detection of nitrite spiked in the liquid from a tin of mushrooms and the mineralized spring water. It was found that the modified electrode exhibited good selectivity for nitrite.
Resumo:
It was found that vitamin B-12 could be strongly adsorpted on the anodized glassy carbon electrode to form a vitamin Thy-modified glassy carbon electrode. The modified electrode is stable in a wide pH range. The electrochemical characteristics of the modified electrode were studied in details. In addition, it was found that the reduction of oxygen could be catalyzed by the modified electrode to form H2O2. An EC mechanism was suggested for the process, and the follow up chemical reaction might he the rate determined step.
Resumo:
The volumetric behavior of a chloride complex of palladium was studied at a glassy carbon electrode (GCE). The Pd-IV complex existing on the GCE surface was found, which was proposed to form an octahedral surface complex through coordination to the oxygen atom of an oxygen functional group on the pretreated GCE surface. The ferri/ferrocyanide redox couple was used as a probe to examine the activity of the GCE. X-ray photoelectron spectroscopy provided the evidence of the surface complex existing on the GCE. Highly dispersed Pd particles can be obtained when the surface complexes were reduced electrochemically to Pd atoms. The Pd particles obtained in this way were in nanometer scale and exhibit high catalytic activity towards the oxidation of hydrazine. (C) 1997 Elsevier Science Ltd.
Resumo:
Abnormal IR spectra of CO adsorbed at the surface of glass carbon electrode modified with polypyrrole film with Pt microparticles are reported.
Resumo:
A highly dispersed ultramicro palladium-particle modified carbon fiber microdisk array electrode (Pd-CFE) was employed for capillary electrophoresis-electrochemical (CEEC) detection of hydroxylamine (HA). The Pd particles obtained were in the nanometer scale, had a high electrocatalytic activity towards HA and exhibited good reproducibility and stability. A linear relationship between the current and the analyte concentration was found between 5 x 10(-6) and 1 x 10(-3) mol/l of HA with a correlation coefficient of 0.9992. The detection limit was 5 x 10(-8) mol/l. The applicability of the method for the determination of HA in river water and waste water was investigated.