969 resultados para Differential equations, Partial -- Numerical solutions -- Computer programs


Relevância:

100.00% 100.00%

Publicador:

Resumo:

An unabridged and unaltered republication of the Hedrick-Dunkel translation (v. 1-2); v. 3. newly translated by Howard G. Bergmann.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Available on demand as hard copy or computer file from Cornell University Library.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper investigates the non-linear bending behaviour of functionally graded plates that are bonded with piezoelectric actuator layers and subjected to transverse loads and a temperature gradient based on Reddy's higher-order shear deformation plate theory. The von Karman-type geometric non-linearity, piezoelectric and thermal effects are included in mathematical formulations. The temperature change is due to a steady-state heat conduction through the plate thickness. The material properties are assumed to be graded in the thickness direction according to a power-law distribution in terms of the volume fractions of the constituents. The plate is clamped at two opposite edges, while the remaining edges can be free, simply supported or clamped. Differential quadrature approximation in the X-axis is employed to convert the partial differential governing equations and the associated boundary conditions into a set of ordinary differential equations. By choosing the appropriate functions as the displacement and stress functions on each nodal line and then applying the Galerkin procedure, a system of non-linear algebraic equations is obtained, from which the non-linear bending response of the plate is determined through a Picard iteration scheme. Numerical results for zirconia/aluminium rectangular plates are given in dimensionless graphical form. The effects of the applied actuator voltage, the volume fraction exponent, the temperature gradient, as well as the characteristics of the boundary conditions are also studied in detail. Copyright (C) 2004 John Wiley Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Poisson representation techniques provide a powerful method for mapping master equations for birth/death processes -- found in many fields of physics, chemistry and biology -- into more tractable stochastic differential equations. However, the usual expansion is not exact in the presence of boundary terms, which commonly occur when the differential equations are nonlinear. In this paper, a gauge Poisson technique is introduced that eliminates boundary terms, to give an exact representation as a weighted rate equation with stochastic terms. These methods provide novel techniques for calculating and understanding the effects of number correlations in systems that have a master equation description. As examples, correlations induced by strong mutations in genetics, and the astrophysical problem of molecule formation on microscopic grain surfaces are analyzed. Exact analytic results are obtained that can be compared with numerical simulations, demonstrating that stochastic gauge techniques can give exact results where standard Poisson expansions are not able to.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work formulates existence theorems for solutions to two-point boundary value problems on time scales. The methods used include maximum principles, a priori bounds and topological degree theory.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Analytical solutions are presented for linear finite-strain one-dimensional consolidation of initially unconsolidated soil layers with surcharge loading for both one- and two-way drainage. These solutions complement earlier solutions for initially unconsolidated soil layers without surcharge and initially normally consolidated soil layers with surcharge. Small-strain solutions for the consolidation of initially unconsolidated soil layers with surcharge loading are also presented, and the relationship between the earlier solutions for initially unconsolidated soil without surcharge and the corresponding small-strain solutions, which was not addressed in the earlier work, is clarified. The new solutions for initially unconsolidated soil with surcharge loading can be applied to the analysis of low stress consolidation tests and to the partial validation of numerical solutions of non-linear finite-strain consolidation. They also clarify a formerly perplexing aspect of finite-strain solution charts first noted in numerical solutions. Copyright (C) 2004 John Wiley Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate the structure of the positive solution set for nonlinear three-point boundary value problems of the form u('') + h(t) f(u) = 0, u(0) = 0, u(1) = lambdau(eta), where eta epsilon (0, 1) is given lambda epsilon (0, 1/n) is a parameter, f epsilon C ([0, infinity), [0, infinity)) satisfies f (s) > 0 for s > 0, and h epsilon C([0, 1], [0, infinity)) is not identically zero on any subinterval of [0, 1]. Our main results demonstrate the existence of continua of positive solutions of the above problem. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose - In many scientific and engineering fields, large-scale heat transfer problems with temperature-dependent pore-fluid densities are commonly encountered. For example, heat transfer from the mantle into the upper crust of the Earth is a typical problem of them. The main purpose of this paper is to develop and present a new combined methodology to solve large-scale heat transfer problems with temperature-dependent pore-fluid densities in the lithosphere and crust scales. Design/methodology/approach - The theoretical approach is used to determine the thickness and the related thermal boundary conditions of the continental crust on the lithospheric scale, so that some important information can be provided accurately for establishing a numerical model of the crustal scale. The numerical approach is then used to simulate the detailed structures and complicated geometries of the continental crust on the crustal scale. The main advantage in using the proposed combination method of the theoretical and numerical approaches is that if the thermal distribution in the crust is of the primary interest, the use of a reasonable numerical model on the crustal scale can result in a significant reduction in computer efforts. Findings - From the ore body formation and mineralization points of view, the present analytical and numerical solutions have demonstrated that the conductive-and-advective lithosphere with variable pore-fluid density is the most favorite lithosphere because it may result in the thinnest lithosphere so that the temperature at the near surface of the crust can be hot enough to generate the shallow ore deposits there. The upward throughflow (i.e. mantle mass flux) can have a significant effect on the thermal structure within the lithosphere. In addition, the emplacement of hot materials from the mantle may further reduce the thickness of the lithosphere. Originality/value - The present analytical solutions can be used to: validate numerical methods for solving large-scale heat transfer problems; provide correct thermal boundary conditions for numerically solving ore body formation and mineralization problems on the crustal scale; and investigate the fundamental issues related to thermal distributions within the lithosphere. The proposed finite element analysis can be effectively used to consider the geometrical and material complexities of large-scale heat transfer problems with temperature-dependent fluid densities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recently the Balanced method was introduced as a class of quasi-implicit methods for solving stiff stochastic differential equations. We examine asymptotic and mean-square stability for several implementations of the Balanced method and give a generalized result for the mean-square stability region of any Balanced method. We also investigate the optimal implementation of the Balanced method with respect to strong convergence.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Despite the number of computer-assisted methods described for the derivation of steady-state equations of enzyme systems, most of them are focused on strict steady-state conditions or are not able to solve complex reaction mechanisms. Moreover, many of them are based on computer programs that are either not readily available or have limitations. We present here a computer program called WinStes, which derives equations for both strict steady-state systems and those with the assumption of rapid equilibrium, for branched or unbranched mechanisms, containing both reversible and irreversible conversion steps. It solves reaction mechanisms involving up to 255 enzyme species, connected by up to 255 conversion steps. The program provides all the advantages of the Windows programs, such as a user-friendly graphical interface, and has a short computation time. WinStes is available free of charge on request from the authors. (c) 2006 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The developments of models in Earth Sciences, e.g. for earthquake prediction and for the simulation of mantel convection, are fare from being finalized. Therefore there is a need for a modelling environment that allows scientist to implement and test new models in an easy but flexible way. After been verified, the models should be easy to apply within its scope, typically by setting input parameters through a GUI or web services. It should be possible to link certain parameters to external data sources, such as databases and other simulation codes. Moreover, as typically large-scale meshes have to be used to achieve appropriate resolutions, the computational efficiency of the underlying numerical methods is important. Conceptional this leads to a software system with three major layers: the application layer, the mathematical layer, and the numerical algorithm layer. The latter is implemented as a C/C++ library to solve a basic, computational intensive linear problem, such as a linear partial differential equation. The mathematical layer allows the model developer to define his model and to implement high level solution algorithms (e.g. Newton-Raphson scheme, Crank-Nicholson scheme) or choose these algorithms form an algorithm library. The kernels of the model are generic, typically linear, solvers provided through the numerical algorithm layer. Finally, to provide an easy-to-use application environment, a web interface is (semi-automatically) built to edit the XML input file for the modelling code. In the talk, we will discuss the advantages and disadvantages of this concept in more details. We will also present the modelling environment escript which is a prototype implementation toward such a software system in Python (see www.python.org). Key components of escript are the Data class and the PDE class. Objects of the Data class allow generating, holding, accessing, and manipulating data, in such a way that the actual, in the particular context best, representation is transparent to the user. They are also the key to establish connections with external data sources. PDE class objects are describing (linear) partial differential equation objects to be solved by a numerical library. The current implementation of escript has been linked to the finite element code Finley to solve general linear partial differential equations. We will give a few simple examples which will illustrate the usage escript. Moreover, we show the usage of escript together with Finley for the modelling of interacting fault systems and for the simulation of mantel convection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work reports the developnent of a mathenatical model and distributed, multi variable computer-control for a pilot plant double-effect climbing-film evaporator. A distributed-parameter model of the plant has been developed and the time-domain model transformed into the Laplace domain. The model has been further transformed into an integral domain conforming to an algebraic ring of polynomials, to eliminate the transcendental terms which arise in the Laplace domain due to the distributed nature of the plant model. This has made possible the application of linear control theories to a set of linear-partial differential equations. The models obtained have well tracked the experimental results of the plant. A distributed-computer network has been interfaced with the plant to implement digital controllers in a hierarchical structure. A modern rnultivariable Wiener-Hopf controller has been applled to the plant model. The application has revealed a limitation condition that the plant matrix should be positive-definite along the infinite frequency axis. A new multi variable control theory has emerged fram this study, which avoids the above limitation. The controller has the structure of the modern Wiener-Hopf controller, but with a unique feature enabling a designer to specify the closed-loop poles in advance and to shape the sensitivity matrix as required. In this way, the method treats directly the interaction problems found in the chemical processes with good tracking and regulation performances. Though the ability of the analytical design methods to determine once and for all whether a given set of specifications can be met is one of its chief advantages over the conventional trial-and-error design procedures. However, one disadvantage that offsets to some degree the enormous advantages is the relatively complicated algebra that must be employed in working out all but the simplest problem. Mathematical algorithms and computer software have been developed to treat some of the mathematical operations defined over the integral domain, such as matrix fraction description, spectral factorization, the Bezout identity, and the general manipulation of polynomial matrices. Hence, the design problems of Wiener-Hopf type of controllers and other similar algebraic design methods can be easily solved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A recent method for phase equilibria, the AGAPE method, has been used to predict activity coefficients and excess Gibbs energy for binary mixtures with good accuracy. The theory, based on a generalised London potential (GLP), accounts for intermolecular attractive forces. Unlike existing prediction methods, for example UNIFAC, the AGAPE method uses only information derived from accessible experimental data and molecular information for pure components. Presently, the AGAPE method has some limitations, namely that the mixtures must consist of small, non-polar compounds with no hydrogen bonding, at low moderate pressures and at conditions below the critical conditions of the components. Distinction between vapour-liquid equilibria and gas-liquid solubility is rather arbitrary and it seems reasonable to extend these ideas to solubility. The AGAPE model uses a molecular lattice-based mixing rule. By judicious use of computer programs a methodology was created to examine a body of experimental gas-liquid solubility data for gases such as carbon dioxide, propane, n-butane or sulphur hexafluoride which all have critical temperatures a little above 298 K dissolved in benzene, cyclo-hexane and methanol. Within this methodology the value of the GLP as an ab initio combining rule for such solutes in very dilute solutions in a variety of liquids has been tested. Using the GLP as a mixing rule involves the computation of rotationally averaged interactions between the constituent atoms, and new calculations have had to be made to discover the magnitude of the unlike pair interactions. These numbers have been seen as significant in their own right in the context of the behaviour of infinitely-dilute solutions. A method for extending this treatment to "permanent" gases has also been developed. The findings from the GLP method and from the more general AGAPE approach have been examined in the context of other models for gas-liquid solubility, both "classical" and contemporary, in particular those derived from equations-of-state methods and from reference solvent methods.