915 resultados para Data reporting


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Birth weight and length have seasonal fluctuations. Previous analyses of birth weight by latitude effects identified seemingly contradictory results, showing both 6 and 12 monthly periodicities in weight. The aims of this paper are twofold: (a) to explore seasonal patterns in a large, Danish Medical Birth Register, and (b) to explore models based on seasonal exposures and a non-linear exposure-risk relationship. Methods Birth weight and birth lengths on over 1.5 million Danish singleton, live births were examined for seasonality. We modelled seasonal patterns based on linear, U- and J-shaped exposure-risk relationships. We then added an extra layer of complexity by modelling weighted population-based exposure patterns. Results The Danish data showed clear seasonal fluctuations for both birth weight and birth length. A bimodal model best fits the data, however the amplitude of the 6 and 12 month peaks changed over time. In the modelling exercises, U- and J-shaped exposure-risk relationships generate time series with both 6 and 12 month periodicities. Changing the weightings of the population exposure risks result in unexpected properties. A J-shaped exposure-risk relationship with a diminishing population exposure over time fitted the observed seasonal pattern in the Danish birth weight data. Conclusion In keeping with many other studies, Danish birth anthropometric data show complex and shifting seasonal patterns. We speculate that annual periodicities with non-linear exposure-risk models may underlie these findings. Understanding the nature of seasonal fluctuations can help generate candidate exposures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: To determine whether primary care management of chronic heart failure (CHF) differed between rural and urban areas in Australia. Design: A cross-sectional survey stratified by Rural, Remote and Metropolitan Areas (RRMA) classification. The primary source of data was the Cardiac Awareness Survey and Evaluation (CASE) study. Setting: Secondary analysis of data obtained from 341 Australian general practitioners and 23 845 adults aged 60 years or more in 1998. Main outcome measures: CHF determined by criteria recommended by the World Health Organization, diagnostic practices, use of pharmacotherapy, and CHF-related hospital admissions in the 12 months before the study. Results: There was a significantly higher prevalence of CHF among general practice patients in large and small rural towns (16.1%) compared with capital city and metropolitan areas (12.4%) (P < 0.001). Echocardiography was used less often for diagnosis in rural towns compared with metropolitan areas (52.0% v 67.3%, P < 0.001). Rates of specialist referral were also significantly lower in rural towns than in metropolitan areas (59.1% v 69.6%, P < 0.001), as were prescribing rates of angiotensin-converting enzyme inhibitors (51.4% v 60.1%, P < 0.001). There was no geographical variation in prescribing rates of β-blockers (12.6% [rural] v 11.8% [metropolitan], P = 0.32). Overall, few survey participants received recommended “evidence-based practice” diagnosis and management for CHF (metropolitan, 4.6%; rural, 3.9%; and remote areas, 3.7%). Conclusions: This study found a higher prevalence of CHF, and significantly lower use of recommended diagnostic methods and pharmacological treatment among patients in rural areas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aims The aim of this cross sectional study is to explore levels of physical activity and sitting behaviour amongst a sample of pregnant Australian women (n = 81), and investigate whether reported levels of physical activity and/or time spent sitting were associated with depressive symptom scores after controlling for potential covariates. Methods Study participants were women who attended the antenatal clinic of a large Brisbane maternity hospital between October and November 2006. Data relating to participants. current levels of physical activity, sitting behaviour, depressive symptoms, demographic characteristics and exposure to known risk factors for depression during pregnancy were collected; via on-site survey, follow-up telephone interview (approximately one week later) and post delivery access to participant hospital records. Results Participants were aged 29.5 (¡¾ 5.6) years and mostly partnered (86.4%) with a gross household income above $26,000 per annum (88.9%). Levels of physical activity were generally low, with only 28.4 % of participants reporting sufficient total activity and 16% of participants reporting sufficient planned (leisure-time) activity. The sample mean for depressive symptom scores measured by the Hospital Anxiety and Depression Scale (HADS-D) was 6.38 (¡¾ 2.55). The mean depressive symptom scores for participants who reported total moderate-to-vigorous activity levels of sufficient, insufficient, and none, were 5.43 (¡¾ 1.56), 5.82 (¡¾ 1.77) and 7.63 (¡¾ 3.25), respectively. Hierarchical multivariable linear regression modelling indicated that after controlling for covariates, a statistically significant difference of 1.09 points was observed between mean depressive symptom scores of participants who reported sufficient total physical activity, compared with participants who reported they were engaging in no moderate-to-vigorous activity in a typical week (p = 0.05) but this did not reach the criteria for a clinically meaningful difference. Total physical activity was contributed 2.2% to the total 30.3% of explained variance within this model. The other main contributors to explained variance in multivariable regression models were anxiety symptom scores and the number of existing children. Further, a trend was observed between higher levels of planned sitting behaviour and higher depressive symptom scores (p = 0.06); this correlation was not clinically meaningful. Planned sitting contributed 3.2% to the total 31.3 % of explained variance. The number of regression covariates and limited sample size led to a less than ideal ratio of covariates to participants, probably attenuating this relationship. Specific information about the sitting-based activities in which participants engaged may have provided greater insight about the relationship between planned sitting and depressive symptoms, but these data were not captured by the present study. Conclusions The finding that higher levels of physical activity were associated with lower levels of depressive symptoms is consistent with the current body of existing literature in pregnant women, and with a larger body of evidence based in general population samples. Although this result was not considered clinically meaningful, the criterion for a clinically meaningful result was an a priori decision based on quality of life literature in non-pregnant populations and may not truly reflect a difference in symptoms that is meaningful to pregnant women. Further investigation to establish clinically meaningful criteria for continuous depressive symptom data in pregnant women is required. This result may have implications relating to prevention and management options for depression during pregnancy. The observed trend between planned sitting and depressive symptom scores is consistent with literature based on leisure-time sitting behaviour in general population samples, and suggests that further research in this area, with larger samples of pregnant women and more specific sitting data is required to explore potential associations between activities such as television viewing and depressive symptoms, as this may be an area of behaviour that is amenable to modification.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sing & Grow is an early intervention music therapy project presented to families with additional needs, or those at risk of experiencing disadvantage due to social and/or economic circumstances that may impact on their parenting experiences. The aim of the project is to provide short term music therapy programs to families in communities where access to such services may be limited. The program is strengths-based and focuses on building upon a parent’s capacity to relate to and respond to their child’s emotional and developmental needs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives: To quantify the concordance of hospital child maltreatment data with child protection service (CPS) records and identify factors associated with linkage. Methods: Multivariable logistic regression analysis was conducted following retrospective medical record review and database linkage of 884 child records from 20 hospitals and the CPS in Queensland, Australia. Results: Nearly all children with hospital assigned maltreatment codes (93.1%) had a CPS record. Of these, 85.1% had a recent notification. 29% of the linked maltreatment group (n=113) were not known to CPS prior to the hospital presentation. Almost 1/3 of children with unintentional injury hospital codes were known to CPS. Just over 24% of the linked unintentional injury group (n=34) were not known to CPS prior to the hospital presentation but became known during or after discharge from hospital. These estimates are higher than the 2006/07 annual rate of 2.39% of children being notified to CPS. Rural children were more likely to link to CPS, and children were over 3 times more likely to link if the index injury documentation included additional diagnoses or factors affecting their health. Conclusions: The system for referring maltreatment cases to CPS is generally efficient, although up to 1 in 15 children had codes for maltreatment but could not be linked to CPS data. The high proportion of children with unintentional injury codes who linked to CPS suggests clinicians and hospital-based child protection staff should be supported by further education and training to ensure children at risk are being detected by the child protection system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Computational journalism involves the application of software and technologies to the activities of journalism, and it draws from the fields of computer science, the social sciences, and media and communications. New technologies may enhance the traditional aims of journalism, or may initiate greater interaction between journalists and information and communication technology (ICT) specialists. The enhanced use of computing in news production is related in particular to three factors: larger government data sets becoming more widely available; the increasingly sophisticated and ubiquitous nature of software; and the developing digital economy. Drawing upon international examples, this paper argues that computational journalism techniques may provide new foundations for original investigative journalism and increase the scope for new forms of interaction with readers. Computer journalism provides a major opportunity to enhance the delivery of original investigative journalism, and to attract and retain readers online.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Data preprocessing is widely recognized as an important stage in anomaly detection. This paper reviews the data preprocessing techniques used by anomaly-based network intrusion detection systems (NIDS), concentrating on which aspects of the network traffic are analyzed, and what feature construction and selection methods have been used. Motivation for the paper comes from the large impact data preprocessing has on the accuracy and capability of anomaly-based NIDS. The review finds that many NIDS limit their view of network traffic to the TCP/IP packet headers. Time-based statistics can be derived from these headers to detect network scans, network worm behavior, and denial of service attacks. A number of other NIDS perform deeper inspection of request packets to detect attacks against network services and network applications. More recent approaches analyze full service responses to detect attacks targeting clients. The review covers a wide range of NIDS, highlighting which classes of attack are detectable by each of these approaches. Data preprocessing is found to predominantly rely on expert domain knowledge for identifying the most relevant parts of network traffic and for constructing the initial candidate set of traffic features. On the other hand, automated methods have been widely used for feature extraction to reduce data dimensionality, and feature selection to find the most relevant subset of features from this candidate set. The review shows a trend toward deeper packet inspection to construct more relevant features through targeted content parsing. These context sensitive features are required to detect current attacks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Concerns raised in educational reports about school science in terms of students. outcomes and attitudes, as well as science teaching practices prompted investigation into science learning and teaching practices at the foundational level of school science. Without science content and process knowledge, understanding issues of modern society and active participation in decision-making is difficult. This study contended that a focus on the development of the language of science could enable learners to engage more effectively in learning science and enhance their interest and attitudes towards science. Furthermore, it argued that explicit teaching practices where science language is modelled and scaffolded would facilitate the learning of science by young children at the beginning of their formal schooling. This study aimed to investigate science language development at the foundational level of school science learning in the preparatory-school with students aged five and six years. It focussed on the language of science and science teaching practices in early childhood. In particular, the study focussed on the capacity for young students to engage with and understand science language. Previous research suggests that students have difficulty with the language of science most likely because of the complexities and ambiguities of science language. Furthermore, literature indicates that tensions transpire between traditional science teaching practices and accepted early childhood teaching practices. This contention prompted investigation into means and models of pedagogy for learning foundational science language, knowledge and processes in early childhood. This study was positioned within qualitative assumptions of research and reported via descriptive case study. It was located in a preparatory-school classroom with the class teacher, teacher-aide, and nineteen students aged four and five years who participated with the researcher in the study. Basil Bernstein.s pedagogical theory coupled with Halliday.s Systemic Functional Linguistics (SFL) framed an examination of science pedagogical practices for early childhood science learning. Students. science learning outcomes were gauged by focussing a Hallydayan lens on their oral and reflective language during 12 science-focussed episodes of teaching. Data were collected throughout the 12 episodes. Data included video and audio-taped science activities, student artefacts, journal and anecdotal records, semi-structured interviews and photographs. Data were analysed according to Bernstein.s visible and invisible pedagogies and performance and competence models. Additionally, Halliday.s SFL provided the resource to examine teacher and student language to determine teacher/student interpersonal relationships as well as specialised science and everyday language used in teacher and student science talk. Their analysis established the socio-linguistic characteristics that promoted science competencies in young children. An analysis of the data identified those teaching practices that facilitate young children.s acquisition of science meanings. Positive indications for modelling science language and science text types to young children have emerged. Teaching within the studied setting diverged from perceived notions of common early childhood practices and the benefits of dynamic shifting pedagogies were validated. Significantly, young students demonstrated use of particular specialised components of school-science language in terms of science language features and vocabulary. As well, their use of language demonstrated the students. knowledge of science concepts, processes and text types. The young students made sense of science phenomena through their incorporation of a variety of science language and text-types in explanations during both teacher-directed and independent situations. The study informs early childhood science practices as well as practices for foundational school science teaching and learning. It has exposed implications for science education policy, curriculum and practices. It supports other findings in relation to the capabilities of young students. The study contributes to Systemic Functional Linguistic theory through the development of a specific resource to determine the technicality of teacher language used in teaching young students. Furthermore, the study contributes to methodology practices relating to Bernsteinian theoretical perspectives and has demonstrated new ways of depicting and reporting teaching practices. It provides an analytical tool which couples Bernsteinian and Hallidayan theoretical perspectives. Ultimately, it defines directions for further research in terms of foundation science language learning, ongoing learning of the language of science and learning science, science teaching and learning practices, specifically in foundational school science, and relationships between home and school science language experiences.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Acoustic sensors play an important role in augmenting the traditional biodiversity monitoring activities carried out by ecologists and conservation biologists. With this ability however comes the burden of analysing large volumes of complex acoustic data. Given the complexity of acoustic sensor data, fully automated analysis for a wide range of species is still a significant challenge. This research investigates the use of citizen scientists to analyse large volumes of environmental acoustic data in order to identify bird species. Specifically, it investigates ways in which the efficiency of a user can be improved through the use of species identification tools and the use of reputation models to predict the accuracy of users with unidentified skill levels. Initial experimental results are reported.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Since manually constructing domain-specific sentiment lexicons is extremely time consuming and it may not even be feasible for domains where linguistic expertise is not available. Research on the automatic construction of domain-specific sentiment lexicons has become a hot topic in recent years. The main contribution of this paper is the illustration of a novel semi-supervised learning method which exploits both term-to-term and document-to-term relations hidden in a corpus for the construction of domain specific sentiment lexicons. More specifically, the proposed two-pass pseudo labeling method combines shallow linguistic parsing and corpusbase statistical learning to make domain-specific sentiment extraction scalable with respect to the sheer volume of opinionated documents archived on the Internet these days. Another novelty of the proposed method is that it can utilize the readily available user-contributed labels of opinionated documents (e.g., the user ratings of product reviews) to bootstrap the performance of sentiment lexicon construction. Our experiments show that the proposed method can generate high quality domain-specific sentiment lexicons as directly assessed by human experts. Moreover, the system generated domain-specific sentiment lexicons can improve polarity prediction tasks at the document level by 2:18% when compared to other well-known baseline methods. Our research opens the door to the development of practical and scalable methods for domain-specific sentiment analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis investigates profiling and differentiating customers through the use of statistical data mining techniques. The business application of our work centres on examining individuals’ seldomly studied yet critical consumption behaviour over an extensive time period within the context of the wireless telecommunication industry; consumption behaviour (as oppose to purchasing behaviour) is behaviour that has been performed so frequently that it become habitual and involves minimal intentions or decision making. Key variables investigated are the activity initialised timestamp and cell tower location as well as the activity type and usage quantity (e.g., voice call with duration in seconds); and the research focuses are on customers’ spatial and temporal usage behaviour. The main methodological emphasis is on the development of clustering models based on Gaussian mixture models (GMMs) which are fitted with the use of the recently developed variational Bayesian (VB) method. VB is an efficient deterministic alternative to the popular but computationally demandingMarkov chainMonte Carlo (MCMC) methods. The standard VBGMMalgorithm is extended by allowing component splitting such that it is robust to initial parameter choices and can automatically and efficiently determine the number of components. The new algorithm we propose allows more effective modelling of individuals’ highly heterogeneous and spiky spatial usage behaviour, or more generally human mobility patterns; the term spiky describes data patterns with large areas of low probability mixed with small areas of high probability. Customers are then characterised and segmented based on the fitted GMM which corresponds to how each of them uses the products/services spatially in their daily lives; this is essentially their likely lifestyle and occupational traits. Other significant research contributions include fitting GMMs using VB to circular data i.e., the temporal usage behaviour, and developing clustering algorithms suitable for high dimensional data based on the use of VB-GMM.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High levels of sitting have been linked with poor health outcomes. Previously a pragmatic MTI accelerometer data cut-point (100 count/min-1) has been used to estimate sitting. Data on the accuracy of this cut-point is unavailable. PURPOSE: To ascertain whether the 100 count/min-1 cut-point accurately isolates sitting from standing activities. METHODS: Participants fitted with an MTI accelerometer were observed performing a range of sitting, standing, light & moderate activities. 1-min epoch MTI data were matched to observed activities, then re-categorized as either sitting or not using the 100 count/min-1 cut-point. Self-report demographics and current physical activity were collected. Generalized estimating equation for repeated measures with a binary logistic model analyses (GEE), corrected for age, gender and BMI, were conducted to ascertain the odds of the MTI data being misclassified. RESULTS: Data were from 26 healthy subjects (8 men; 50% aged <25 years; mean BMI (SD) 22.7(3.8)m/kg2). MTI sitting and standing data mode was 0 count/min-1, with 46% of sitting activities and 21% of standing activities recording 0 count/min-1. The GEE was unable to accurately isolate sitting from standing activities using the 100 count/min-1 cut-point, since all sitting activities were incorrectly predicted as standing (p=0.05). To further explore the sensitivity of MTI data to delineate sitting from standing, the upper 95% confidence interval of the mean for the sitting activities (46 count/min-1) was used to re-categorise the data; this resulted in the GEE correctly classifying 49% of sitting, and 69% of standing activities. Using the 100 count/min-1 cut-point the data were re-categorised into a combined ‘sit/stand’ category and tested against other light activities: 88% of sit/stand and 87% of light activities were accurately predicted. Using Freedson’s moderate cut-point of 1952 count/min-1 the GEE accurately predicted 97% of light vs. 90% of moderate activities. CONCLUSION: The distributions of MTI recorded sitting and standing data overlap considerably, as such the 100 count/min -1 cut-point did not accurately isolate sitting from other static standing activities. The 100 count/min -1 cut-point more accurately predicted sit/stand vs. other movement orientated activities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study is to assess the potential use of Bluetooth data for traffic monitoring of arterial road networks. Bluetooth data provides the direct measurement of travel time between pairs of scanners, and intensive research has been reported on this topic. Bluetooth data includes “Duration” data, which represents the time spent by Bluetooth devices to pass through the detection range of Bluetooth scanners. If the scanners are located at signalised intersections, this Duration can be related to intersection performance, and hence represents valuable information for traffic monitoring. However the use of Duration has been ignored in previous analyses. In this study, the Duration data as well as travel time data is analysed to capture the traffic condition of a main arterial route in Brisbane. The data consists of one week of Bluetooth data provided by Brisbane City Council. As well, micro simulation analysis is conducted to further investigate the properties of Duration. The results reveal characteristics of Duration, and address future research needs to utilise this valuable data source.