775 resultados para Data Mining, Rough Sets, Multi-Dimension, Association Rules, Constraint


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação de Mestrado

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mestrado em Engenharia Electrotécnica – Sistemas Eléctricos de Energia

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A procura de padrões nos dados de modo a formar grupos é conhecida como aglomeração de dados ou clustering, sendo uma das tarefas mais realizadas em mineração de dados e reconhecimento de padrões. Nesta dissertação é abordado o conceito de entropia e são usados algoritmos com critérios entrópicos para fazer clustering em dados biomédicos. O uso da entropia para efetuar clustering é relativamente recente e surge numa tentativa da utilização da capacidade que a entropia possui de extrair da distribuição dos dados informação de ordem superior, para usá-la como o critério na formação de grupos (clusters) ou então para complementar/melhorar algoritmos existentes, numa busca de obtenção de melhores resultados. Alguns trabalhos envolvendo o uso de algoritmos baseados em critérios entrópicos demonstraram resultados positivos na análise de dados reais. Neste trabalho, exploraram-se alguns algoritmos baseados em critérios entrópicos e a sua aplicabilidade a dados biomédicos, numa tentativa de avaliar a adequação destes algoritmos a este tipo de dados. Os resultados dos algoritmos testados são comparados com os obtidos por outros algoritmos mais “convencionais" como o k-médias, os algoritmos de spectral clustering e um algoritmo baseado em densidade.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Relatório de Projecto apresentado como requisito parcial para obtenção do grau de Mestre em Estatística e Gestão de Informação

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação apresentada como requisito parcial para obtenção do grau de Mestre em Estatística e Gestão de Informação

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação apresentada como requisito parcial para a obtenção do grau de Mestre em Estatística e Gestão de Informação

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação apresentada como requisito parcial para obtenção do grau de Mestre em Estatística e Gestão de Informação

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertation presented at the Faculty of Sciences and Technology of the New University of Lisbon to obtain the degree of Doctor in Electrical Engineering, specialty of Robotics and Integrated Manufacturing

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Extracting the semantic relatedness of terms is an important topic in several areas, including data mining, information retrieval and web recommendation. This paper presents an approach for computing the semantic relatedness of terms using the knowledge base of DBpedia — a community effort to extract structured information from Wikipedia. Several approaches to extract semantic relatedness from Wikipedia using bag-of-words vector models are already available in the literature. The research presented in this paper explores a novel approach using paths on an ontological graph extracted from DBpedia. It is based on an algorithm for finding and weighting a collection of paths connecting concept nodes. This algorithm was implemented on a tool called Shakti that extract relevant ontological data for a given domain from DBpedia using its SPARQL endpoint. To validate the proposed approach Shakti was used to recommend web pages on a Portuguese social site related to alternative music and the results of that experiment are reported in this paper.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Engenharia Electrotécnica e de Computadores

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A vigilância de efeitos indesejáveis após a vacinação é complexa. Existem vários actores de confundimento que podem dar origem a associações espúrias, meramente temporais mas que podem provocar uma percepção do risco alterada e uma consequente desconfiança generalizada acerca do uso das vacinas. Com efeito as vacinas são medicamentos complexos com características únicas cuja vigilância necessita de abordagens metodológicas desenvolvidas para esse propósito. Do exposto se entende que, desde o desenvolvimento da farmacovigilância se tem procurado desenvolver novas metodologias que sejam concomitantes aos Sistemas de Notificação Espontânea que já existem. Neste trabalho propusemo-nos a desenvolver e testar um modelo de vigilância de reacções adversas a vacinas, baseado na auto-declaração pelo utente de eventos ocorridos após a vacinação e testar a capacidade de gerar sinais aplicando cálculos de desproporção a datamining. Para esse efeito foi constituída uma coorte não controlada de utentes vacinados em Centros de Saúde que foram seguidos durante quinze dias. A recolha de eventos adversos a vacinas foi efectuada pelos próprios utentes através de um diário de registo. Os dados recolhidos foram objecto de análise descritiva e análise de data-mining utilizando os cálculos Proportional Reporting Ratio e o Information Component. A metodologia utilizada permitiu gerar um corpo de evidência suficiente para a geração de sinais. Tendo sido gerados quatro sinais. No âmbito do data-mining a utilização do Information Component como método de geração de sinais parece aumentar a eficiência científica ao permitir reduzir o número de ocorrências até detecção de sinal. A informação reportada pelos utentes parece válida como indicador de sinais de reacções adversas não graves, o que permitiu o registo de eventos sem incluir o viés da avaliação da relação causal pelo notificador. Os principais eventos reportados foram eventos adversos locais (62,7%) e febre (31,4%).------------------------------------------ABSTRACT: The monitoring of undesirable effects following vaccination is complex. There are several confounding factors that can lead to merely temporal but spurious associations that can cause a change in the risk perception and a consequent generalized distrust about the safe use of vaccines. Indeed, vaccines are complex drugs with unique characteristics so that its monitoring requires specifically designed methodological approaches. From the above-cited it is understandable that since the development of Pharmacovigilance there has been a drive for the development of new methodologies that are concomitant with Spontaneous Reporting Systems already in place. We proposed to develop and test a new model for vaccine adverse reaction monitoring, based on self-report by users of events following vaccination and to test its capability to generate disproportionality signals applying quantitative methods of signal generation to data-mining. For that effect we set up an uncontrolled cohort of users vaccinated in Healthcare Centers,with a follow-up period of fifteen days. Adverse vaccine events we registered by the users themselves in a paper diary The data was analyzed using descriptive statistics and two quantitative methods of signal generation: Proportional Reporting Ratio and Information Component. themselves in a paper diary The data was analyzed using descriptive statistics and two quantitative methods of signal generation: Proportional Reporting Ratio and Information Component. The methodology we used allowed for the generation of a sufficient body of evidence for signal generation. Four signals were generated. Regarding the data-mining, the use of Information Component as a method for generating disproportionality signals seems to increase scientific efficiency by reducing the number of events needed to signal detection. The information reported by users seems valid as an indicator of non serious adverse vaccine reactions, allowing for the registry of events without the bias of the evaluation of the casual relation by the reporter. The main adverse events reported were injection site reactions (62,7%) and fever (31,4%).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação apresentada como requisito parcial para a obtenção do grau de mestre em Estatística e Gestão de Informação.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Load forecasting has gradually becoming a major field of research in electricity industry. Therefore, Load forecasting is extremely important for the electric sector under deregulated environment as it provides a useful support to the power system management. Accurate power load forecasting models are required to the operation and planning of a utility company, and they have received increasing attention from researches of this field study. Many mathematical methods have been developed for load forecasting. This work aims to develop and implement a load forecasting method for short-term load forecasting (STLF), based on Holt-Winters exponential smoothing and an artificial neural network (ANN). One of the main contributions of this paper is the application of Holt-Winters exponential smoothing approach to the forecasting problem and, as an evaluation of the past forecasting work, data mining techniques are also applied to short-term Load forecasting. Both ANN and Holt-Winters exponential smoothing approaches are compared and evaluated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The restructuring of electricity markets, conducted to increase the competition in this sector, and decrease the electricity prices, brought with it an enormous increase in the complexity of the considered mechanisms. The electricity market became a complex and unpredictable environment, involving a large number of different entities, playing in a dynamic scene to obtain the best advantages and profits. Software tools became, therefore, essential to provide simulation and decision support capabilities, in order to potentiate the involved players’ actions. This paper presents the development of a metalearner, applied to the decision support of electricity markets’ negotiation entities. The proposed metalearner executes a dynamic artificial neural network to create its own output, taking advantage on several learning algorithms implemented in ALBidS, an adaptive learning system that provides decision support to electricity markets’ players. The proposed metalearner considers different weights for each strategy, depending on its individual quality of performance. The results of the proposed method are studied and analyzed in scenarios based on real electricity markets’ data, using MASCEM - a multi-agent electricity market simulator that simulates market players’ operation in the market.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the characterization of high voltage (HV) electric power consumers based on a data clustering approach. The typical load profiles (TLP) are obtained selecting the best partition of a power consumption database among a pool of data partitions produced by several clustering algorithms. The choice of the best partition is supported using several cluster validity indices. The proposed data-mining (DM) based methodology, that includes all steps presented in the process of knowledge discovery in databases (KDD), presents an automatic data treatment application in order to preprocess the initial database in an automatic way, allowing time saving and better accuracy during this phase. These methods are intended to be used in a smart grid environment to extract useful knowledge about customers’ consumption behavior. To validate our approach, a case study with a real database of 185 HV consumers was used.