986 resultados para DNA micro-array
Resumo:
The potential of salicylic acid (SA) encapsulated in porous materials as drug delivery carriers for cancer treatment was studied. Different porous structures, the microporous zeolite NaY, and the mesoporous SBA-15 and MCM-41 were used as hosts for the anti-inflammatory drug. Characterization with different techniques (FTIR, UV/vis, TGA, 1H NMR, and 13C CPMAS NMR) demonstrated the successful loading of SA into the porous hosts. The mesoporous structures showed to be very efficient to encapsulate the SA molecule. The obtained drug delivery systems (DDS) accommodated 0.74 mmol (341 mg/gZEO) in NaY and 1.07 mmol (493 mg/gZEO) to 1.23 mmol (566 mg/gZEO) for SBA-15 and MCM-41, respectively. Interactions between SA molecules and pore structures were identified. A fast and unrestricted liberation of SA at 10 min of the dissolution assay was achieved with 29.3, 46.6, and 50.1 µg/mL of SA from NaY, SBA-15, and MCM-41, respectively, in the in vitro drug release studies (PBS buffer pH 7.4, 37 °C). Kinetic modeling was used to determine the release patterns of the DDS. The porous structures and DDS were evaluated on Hs578T and MDA-MB-468 breast cancer cell lines viability. The porous structures are nontoxic to cancer cells. Cell viability reduction was only observed after the release of SA from MCM- 41 followed by SBA-15 in both breast cancer cell lines.
Resumo:
Spinocerebellar ataxia type 3 (SCA3), also known as Machado-Joseph disease (MJD), is an untreatable autosomal dominant neurodegenerative disease, and the most common such inherited ataxia worldwide. The mutation in SCA3 is the expansion of a polymorphic CAG tri-nucleotide repeat sequence in the C-terminal coding region of the ATXN3 gene at chromosomal locus 14q32.1. The mutant ATXN3 protein encoding expanded glutamine (polyQ) sequences interacts with multiple proteins in vivo, and is deposited as aggregates in the SCA3 brain. A large body of literature suggests that the loss of function of the native ATNX3-interacting proteins that are deposited in the polyQ aggregates contributes to cellular toxicity, systemic neurodegeneration and the pathogenic mechanism in SCA3. Nonetheless, a significant understanding of the disease etiology of SCA3, the molecular mechanism by which the polyQ expansions in the mutant ATXN3 induce neurodegeneration in SCA3 has remained elusive. In the present study, we show that the essential DNA strand break repair enzyme PNKP (polynucleotide kinase 3'-phosphatase) interacts with, and is inactivated by, the mutant ATXN3, resulting in inefficient DNA repair, persistent accumulation of DNA damage/strand breaks, and subsequent chronic activation of the DNA damage-response ataxia telangiectasia-mutated (ATM) signaling pathway in SCA3. We report that persistent accumulation of DNA damage/strand breaks and chronic activation of the serine/threonine kinase ATM and the downstream p53 and protein kinase C-d pro-apoptotic pathways trigger neuronal dysfunction and eventually neuronal death in SCA3. Either PNKP overexpression or pharmacological inhibition of ATM dramatically blocked mutant ATXN3-mediated cell death. Discovery of the mechanism by which mutant ATXN3 induces DNA damage and amplifies the pro-death signaling pathways provides a molecular basis for neurodegeneration due to PNKP inactivation in SCA3, and for the first time offers a possible approach to treatment.
Resumo:
DNA strand-breaks (SBs) with non-ligatable ends are generated by ionizing radiation, oxidative stress, various chemotherapeutic agents, and also as base excision repair (BER) intermediates. Several neurological diseases have already been identified as being due to a deficiency in DNA end-processing activities. Two common dirty ends, 3'-P and 5'-OH, are processed by mammalian polynucleotide kinase 3'-phosphatase (PNKP), a bifunctional enzyme with 3'-phosphatase and 5'-kinase activities. We have made the unexpected observation that PNKP stably associates with Ataxin-3 (ATXN3), a polyglutamine repeat-containing protein mutated in spinocerebellar ataxia type 3 (SCA3), also known as Machado-Joseph Disease (MJD). This disease is one of the most common dominantly inherited ataxias worldwide; the defect in SCA3 is due to CAG repeat expansion (from the normal 14-41 to 55-82 repeats) in the ATXN3 coding region. However, how the expanded form gains its toxic function is still not clearly understood. Here we report that purified wild-type (WT) ATXN3 stimulates, and by contrast the mutant form specifically inhibits, PNKP's 3' phosphatase activity in vitro. ATXN3-deficient cells also show decreased PNKP activity. Furthermore, transgenic mice conditionally expressing the pathological form of human ATXN3 also showed decreased 3'-phosphatase activity of PNKP, mostly in the deep cerebellar nuclei, one of the most affected regions in MJD patients' brain. Finally, long amplicon quantitative PCR analysis of human MJD patients' brain samples showed a significant accumulation of DNA strand breaks. Our results thus indicate that the accumulation of DNA strand breaks due to functional deficiency of PNKP is etiologically linked to the pathogenesis of SCA3/MJD.
Resumo:
Inspired by natural structures, great attention has been devoted to the study and development of surfaces with extreme wettable properties. The meticulous study of natural systems revealed that the micro/nano-topography of the surface is critical to obtaining unique wettability features, including superhydrophobicity. However, the surface chemistry also has an important role in such surface characteristics. As the interaction of biomaterials with the biological milieu occurs at the surface of the materials, it is expected that synthetic substrates with extreme and controllable wettability ranging from superhydrophilic to superhydrophobic regimes could bring about the possibility of new investigations of cellâ material interactions on nonconventional surfaces and the development of alternative devices with biomedical utility. This first part of the review will describe in detail how proteins and cells interact with micro/nano-structured surfaces exhibiting extreme wettabilities.
Resumo:
Doctoral Thesis in Juridical Sciences (Specialty in Public Legal Sciences)
Resumo:
Doctoral Dissertation for PhD degree in Chemical and Biological Engineering
Resumo:
OBJECTIVE: The intracellular Gram-negative bacterium Chlamydia pneumoniae has been associated with atherosclerosis. The presence of Chlamydia pneumoniae has been investigated in fragments of the arterial wall with a technique for DNA identification. METHODS: Arterial fragments obtained from vascular surgical procedures in 58 patients were analyzed. From these patients, 39 were males and the mean age was 65±6 years. The polymerase chain reaction was used to identify the bacterial DNA with a pair of primers that codify the major outer membrane protein (MOMP) of Chlamydia pneumoniae. The amplified product was visualized by electrophoresis in the 2% agarose gel stained with ethidium bromide, and it was considered positive when migrating in the band of molecular weight of the positive controls. RESULTS: Seven (12%) out of the 58 patients showed positive results for Chlamydia pneumoniae. CONCLUSION: DNA from Chlamydia pneumoniae was identified in the arterial wall of a substantial number of patients with atherosclerosis. This association, which has already been described in other countries, corroborates the evidence favoring a role played by Chlamydia pneumoniae in atherogenesis.
Resumo:
Dissertação de mestrado em Técnicas de Caracterização e Análise Química
Resumo:
Dissertação de mestrado em Bioquímica Aplicada (área de especialização em Biotecnologia)
Resumo:
Dissertação de mestrado em Molecular Genetics
Resumo:
Dissertação de mestrado em Ecologia
Resumo:
Dissertação de mestrado em Ecologia
Resumo:
Mulher de 43 anos, sintomática (dispnéia e palpitações), apresentava múltiplas fístulas de alto débito de ambas coronárias para a artéria pulmonar, embolizadas percutaneamente com micro-molas de liberação controlada e balões destacáveis, com sucesso.
Resumo:
Los municipios están experimentando una transformación en sus roles, funciones y ámbitos de actuación. Entre las nuevas cuestiones que comienzan a incorporarse a la agenda de los gobiernos locales se incluyen las referidas al bienestar de la población (políticas sociales), la puesta en valor de sus sociedades y territorios, a efectos de atraer la inversión exógena o retener y alentar la propia (promoción económica) y el mejoramiento de la calidad ambiental (...). Debido a que el ámbito de resolución de estas cuestiones trasciende en muchos casos los límites territoriales del municipio, la cooperación horizontal e interjurisdiccional constituye una alternativa para el abordaje de las mismas (...). En nuestra opinión, tanto la constitución de espacios regionales como la elaboración de programas y políticas para su desarrollo deben ser resultado del consenso de los actores de las propias regiones. En efecto, si bien los criterios de homogeneidad, funcionalidad, integralidad e historicidad (a que nos hemos referido) tienen relevancia, resultan insuficientes como elementos constitutivos de lo regional. De acuerdo a este enfoque, las regiones serían, ante todo, resultado de un proceso de construcción social de los propios agentes de desarrollo presentes en ella, siendo el rol del Estado el de apuntar los procesos endógenos. Objetivos generales: * Analizar las experiencias de cooperación intermunicipal acontecidas en la Provincia de Córdoba a partir del año 1988. * Evaluar su evolución y perspectivas en orden a la institucionalización de organismos micro-regionales de carácter permanente. * Formular un modelo de gestión de Entes Micro-regionales de Cooperación Intermunicipal. * Elaborar un programa de asistencia técnica a la Cooperación Intermunicipal e Interinstitucional, dirigido a las Municipalidades, Entes Intermunicipales y Gobierno Provincial. Objetivos específicos: * Realizar un estudio comparativo de las dos experiencias más importantes de cooperación intermunicipal que están teniendo lugar en la Provincia de Córdoba: Adesur (Asociación Interinstitucional para el Desarrollo del Sur de Córdoba) y Eincor (Ente Intercomunal para la Promoción del Norte Córdobés).